Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/1306
Title: Some ranks of modules over group rings
Authors: Victor Bovdi
Leonid Kurdachenko
Бовді Віктор
Курдаченко Леонід
Bódi Viktor
Keywords: Dedekind domain;Prüfer domain;special rank;különleges rang
Issue Date: 15-Oct-2020
Publisher: Taylor and Francis Ltd.
Type: dc.type.researchArticle
Citation: Victor Bovdi, Leonid Kurdachenko: Some ranks of modules over group rings. In Communications in Algebra. 2020. Volume 49., Issue 3. pp. 1225-1234.
Series/Report no.: ;Volume 49., Issue 3.
Abstract: Abstract. A commutative ring R has finite rank r, if each ideal of R is generated at most by R elements. A commutative ring R has the r-generator property, if each finitely generated ideal of R can be generated by R elements. Such rings are closely related to Prüfer domains. In the present paper, we investigate some analogs of these concepts for modules over group rings.
Description: https://www.ingentaconnect.com/content/tandf/lagb/2020/00000049/00000003/art00022
URI: http://dspace.kmf.uz.ua:8080/jspui/handle/123456789/1306
ISSN: 0092-7872 (Print)
1532-4125 (Online)
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nc-nd/3.0/us/
Appears in Collections:Bódi Viktor

Files in This Item:
File Description SizeFormat 
Bovdi_V_Kurdachenko_L_Some_ranks_of_modules_over_group_rings_2020.pdfVictor Bovdi, Leonid Kurdachenko: Some ranks of modules over group rings. In Communications in Algebra. 2020. Volume 49., Issue 3. pp. 1225-1234.497.08 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons