Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén: https://dspace.kmf.uz.ua/jspui/handle/123456789/1308
Cím: Operators on positive semidefinite inner product spaces
Szerző(k): Victor Bovdi
Tetiana Klymchuk
Tetiana Rybalkina
Mohamed A. Salim
Vladimir V. Sergeichuk
Bódi Viktor
Бовді Віктор
Клімчук Тетяна
Рибалкіна Тетяна
Сергейчук Володимир
Kulcsszavak: Positive semidefinite inner product spaces;Bounded operators;Belitskii's and Littlewood's algorithms;Pozitív félig végleges belső termékterek;Korlátozott operátorok;Belitski és Littlewood algoritmusai
Kiadás dátuma: 1-júl-2020
Kiadó: Elsevier
Típus: dc.type.collaborative
Hivatkozás: Victor Bovdi, Tetiana Klymchuk, Tetiana Rybalkina, Mohamed A. Salim, Vladimir V. Sergeichuk: Operators on positive semidefinite inner product spaces. In Linear Algebra and its Applications. 1 July 2020. Volume 596. pp. 82-105.
Sorozat neve/Száma.: ;Volume 596.
Absztrakt: Abstract. Let U be a semiunitary space; ie, a complex vector space with scalar product given by a positive semidefinite Hermitian form<⋅,⋅>. If a linear operator A: U→ U is bounded (ie,‖ A u‖⩽ c‖ u‖ for some c∈ R and all u∈ U), then the subspace U 0:={u∈ U|< u, u>= 0} is invariant, and so A defines the linear operators A 0: U 0→ U 0 and A 1: U/U 0→ U/U 0. Let A be an indecomposable bounded operator on U such that 0≠ U 0≠ U. Let λ be an eigenvalue of A 0. We prove that the algebraic multiplicity of λ in A 1 is not less than the geometric multiplicity of λ in A 0, and the geometric multiplicity of λ in A 1 is not less than the number of Jordan blocks J t (λ) of each fixed size t× t in the Jordan canonical form of A 0. We give canonical forms of selfadjoint and isometric operators on U, and of Hermitian forms on U. For an arbitrary system of semiunitary spaces and linear mappings on/between them, we give an algorithm that reduces their matrices to canonical form. Its special cases are Belitskii's and Littlewood's algorithms for systems of linear operators on vector spaces and unitary spaces, respectively.
Leírás: https://www.sciencedirect.com/science/article/abs/pii/S002437952030118X
URI: http://dspace.kmf.uz.ua:8080/jspui/handle/123456789/1308
ISSN: 0024-3795
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nc-nd/3.0/us/
Ebben a gyűjteményben:Bódi Viktor

Fájlok a dokumentumban:
Fájl Leírás MéretFormátum 
Bovdi_V_Operators_on_positive_semidefinite_inner_product_spaces_2020.pdfVictor Bovdi, Tetiana Klymchuk, Tetiana Rybalkina, Mohamed A. Salim, Vladimir V. Sergeichuk: Operators on positive semidefinite inner product spaces. In Linear Algebra and its Applications. 1 July 2020. Volume 596. pp. 82-105.439.65 kBAdobe PDFMegtekintés/Megnyitás


This item is licensed under a Creative Commons License Creative Commons