Please use this identifier to cite or link to this item:
https://dspace.kmf.uz.ua/jspui/handle/123456789/1582
Title: | Isomorphisms of matrix groups over commutative rings |
Authors: | Vasyl Petechuk Julia Petechuk Петечук Василь Петечук Юлія Petecsuk László Petecsuk Júlia |
Keywords: | linear group over ring;homomorphism of matrix group;elementary subgroup over ring |
Issue Date: | 26-Jan-2017 |
Publisher: | Bolyai Institute, University of Szeged |
Type: | dc.type.article |
Citation: | Vasyl Petechuk, Julia Petechuk: Isomorphisms of matrix groups over commutative rings. In Acta scientiarum mathematicarum: acta Universitatis Szegediensis. 2017. Volume 83., Numbers 1-2. pp. 113-123. |
Series/Report no.: | Acta Universitatis Szegediensis;Volume 83., Numbers 1-2. |
Abstract: | Abstract. We give a description of the isomorphism classes of matrix groups over commutative rings with 1 and that have dimension more than 3 and containing the group of elementary transvections. We characterize those homomorphisms of matrix groupe, which satisfy the so-called (*) condition. Such homomorphisms can be constructed with the help of the standard homomorphism. We apply the characterization obtained to the description of the above class of matrix groups. |
Description: | http://pub.acta.hu/acta/showCustomerVolume.action?id=48928&dataObjectType=volume&noDataSet=true&style= |
URI: | http://dspace.kmf.uz.ua:8080/jspui/handle/123456789/1582 |
ISSN: | 0001-6969 (Print) 2064-8316 (Online) |
metadata.dc.rights.uri: | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
Appears in Collections: | Petecsuk Júlia |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Petecsuk_L_Petecsuk_J_Isomorphisms_of_matrix_groups_over_commutative_rings_2017.pdf | Vasyl Petechuk, Julia Petechuk: Isomorphisms of matrix groups over commutative rings. In Acta scientiarum mathematicarum: acta Universitatis Szegediensis. 2017. Volume 83., Numbers 1-2. pp. 113-123. | 315.4 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License