Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/4620
Title: Towards Machine Learning in Heterogeneous Catalysis—A Case Study of 2,4-Dinitrotoluene Hydrogenation
Authors: Jakab-Nácsa Alexandra
Garami Attila
Fiser Béla
Bela Fiser
Фішер Бейло
Farkas László
Viskolcz Béla
Keywords: machine learning;exploratory data analysis;catalyst ranking;catalyst design;MIRA21
Issue Date: 2023
Publisher: MDPI
Type: dc.type.collaborative
Citation: In International Journal of Molecular Sciences. 2023. Volume 24., Issue 14. 13 p.
Series/Report no.: ;Volume 24., Issue 14.
Abstract: Abstract. Utilization of multivariate data analysis in catalysis research has extraordinary importance. The aim of the MIRA21 (MIskolc RAnking 21) model is to characterize heterogeneous catalysts with bias-free quantifiable data from 15 different variables to standardize catalyst characterization and provide an easy tool to compare, rank, and classify catalysts. The present work introduces and mathematically validates the MIRA21 model by identifying fundamentals affecting catalyst comparison and provides support for catalyst design. Literature data of 2,4-dinitrotoluene hydrogenation catalysts for toluene diamine synthesis were analyzed by using the descriptor system of MIRA21. In this study, exploratory data analysis (EDA) has been used to understand the relationships between individual variables such as catalyst performance, reaction conditions, catalyst compositions, and sustainable parameters. The results will be applicable in catalyst design, and using machine learning tools will also be possible.
URI: https://dspace.kmf.uz.ua/jspui/handle/123456789/4620
ISSN: 1422-0067 (Online)
1661-6596 (Print)
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nc-nd/3.0/us/
Appears in Collections:Fiser Béla

Files in This Item:
File Description SizeFormat 
Fiser_B_et_al_Towards_Machine_Learning_in_Heterogeneous_2023.pdfIn International Journal of Molecular Sciences. 2023. Volume 24., Issue 14. 13 p.2.08 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons