Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén:
https://dspace.kmf.uz.ua/jspui/handle/123456789/4620
Cím: | Towards Machine Learning in Heterogeneous Catalysis—A Case Study of 2,4-Dinitrotoluene Hydrogenation |
Szerző(k): | Jakab-Nácsa Alexandra Garami Attila Fiser Béla Bela Fiser Фішер Бейло Farkas László Viskolcz Béla |
Kulcsszavak: | machine learning;exploratory data analysis;catalyst ranking;catalyst design;MIRA21 |
Kiadás dátuma: | 2023 |
Kiadó: | MDPI |
Típus: | dc.type.collaborative |
Hivatkozás: | In International Journal of Molecular Sciences. 2023. Volume 24., Issue 14. 13 p. |
Sorozat neve/Száma.: | ;Volume 24., Issue 14. |
Absztrakt: | Abstract. Utilization of multivariate data analysis in catalysis research has extraordinary importance. The aim of the MIRA21 (MIskolc RAnking 21) model is to characterize heterogeneous catalysts with bias-free quantifiable data from 15 different variables to standardize catalyst characterization and provide an easy tool to compare, rank, and classify catalysts. The present work introduces and mathematically validates the MIRA21 model by identifying fundamentals affecting catalyst comparison and provides support for catalyst design. Literature data of 2,4-dinitrotoluene hydrogenation catalysts for toluene diamine synthesis were analyzed by using the descriptor system of MIRA21. In this study, exploratory data analysis (EDA) has been used to understand the relationships between individual variables such as catalyst performance, reaction conditions, catalyst compositions, and sustainable parameters. The results will be applicable in catalyst design, and using machine learning tools will also be possible. |
URI: | https://dspace.kmf.uz.ua/jspui/handle/123456789/4620 |
ISSN: | 1422-0067 (Online) 1661-6596 (Print) |
metadata.dc.rights.uri: | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
Ebben a gyűjteményben: | Fiser Béla |
Fájlok a dokumentumban:
Fájl | Leírás | Méret | Formátum | |
---|---|---|---|---|
Fiser_B_et_al_Towards_Machine_Learning_in_Heterogeneous_2023.pdf | In International Journal of Molecular Sciences. 2023. Volume 24., Issue 14. 13 p. | 2.08 MB | Adobe PDF | Megtekintés/Megnyitás |
This item is licensed under a Creative Commons License