Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/4620
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJakab-Nácsa Alexandrahu
dc.contributor.authorGarami Attilahu
dc.contributor.authorFiser Bélahu
dc.contributor.authorBela Fiseren
dc.contributor.authorФішер Бейлоuk
dc.contributor.authorFarkas Lászlóhu
dc.contributor.authorViskolcz Bélahu
dc.date.accessioned2025-01-28T08:15:41Z-
dc.date.available2025-01-28T08:15:41Z-
dc.date.issued2023-
dc.identifier.citationIn International Journal of Molecular Sciences. 2023. Volume 24., Issue 14. 13 p.en
dc.identifier.issn1422-0067 (Online)-
dc.identifier.issn1661-6596 (Print)-
dc.identifier.otherDOI: https://www.mdpi.com/article/10.3390/ijms241411461-
dc.identifier.urihttps://dspace.kmf.uz.ua/jspui/handle/123456789/4620-
dc.description.abstractAbstract. Utilization of multivariate data analysis in catalysis research has extraordinary importance. The aim of the MIRA21 (MIskolc RAnking 21) model is to characterize heterogeneous catalysts with bias-free quantifiable data from 15 different variables to standardize catalyst characterization and provide an easy tool to compare, rank, and classify catalysts. The present work introduces and mathematically validates the MIRA21 model by identifying fundamentals affecting catalyst comparison and provides support for catalyst design. Literature data of 2,4-dinitrotoluene hydrogenation catalysts for toluene diamine synthesis were analyzed by using the descriptor system of MIRA21. In this study, exploratory data analysis (EDA) has been used to understand the relationships between individual variables such as catalyst performance, reaction conditions, catalyst compositions, and sustainable parameters. The results will be applicable in catalyst design, and using machine learning tools will also be possible.en
dc.description.sponsorshipThis research was supported by the Ministry of Innovation and Technology-financed 2020-1.1.2-PICI-KFI-2020-00121 project.en
dc.language.isoenen
dc.publisherMDPIen
dc.relation.ispartofseries;Volume 24., Issue 14.-
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectmachine learningen
dc.subjectexploratory data analysisen
dc.subjectcatalyst rankingen
dc.subjectcatalyst designen
dc.subjectMIRA21en
dc.titleTowards Machine Learning in Heterogeneous Catalysis—A Case Study of 2,4-Dinitrotoluene Hydrogenationen
dc.typedc.type.collaborativeen
Appears in Collections:Fiser Béla

Files in This Item:
File Description SizeFormat 
Fiser_B_et_al_Towards_Machine_Learning_in_Heterogeneous_2023.pdfIn International Journal of Molecular Sciences. 2023. Volume 24., Issue 14. 13 p.2.08 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons