Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/4622
Title: The applicability of machine learning in polyurethane design
Authors: Lucjuk-Huszár Kornélia
Viskolcz Béla
Garami Attila
Fiser Béla
Bela Fiser
Фішер Бейло
Keywords: polyurethane;machine learning
Issue Date: 2022
Publisher: Miskolci Egyetem Anyag- és Vegyészmérnöki Kar
Type: dc.type.researchStudy
Citation: In Doktorandusz Almanach. 2022. 1. kötet. pp. 148-152.
Series/Report no.: ;1. kötet
Abstract: Abstract. Polyurethanes (PU) are used in wide range of products (e.g. construction materials). The properties of polyurethane-based materials can be modified and fine-tuned by using additives (e.g. fillers). New synthetic recipes are developed to create better materials is almost exclusively based on trial-anderror cycles which is a time and material intensive process. By using machine learning (ML) algorithms the process can be significantly accelerated. Therefore, to develop new polyurethane types, we are proposing to combine the strength of computational tools with experimental methods and data.
URI: https://dspace.kmf.uz.ua/jspui/handle/123456789/4622
ISSN: 2939-7294
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nc-nd/3.0/us/
Appears in Collections:Fiser Béla

Files in This Item:
File Description SizeFormat 
Fiser_B_The_applicability_2022.pdfIn Doktorandusz Almanach. 2022. 1. kötet. pp. 148-152.571.51 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons