Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/4624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRachid Hadjadjen
dc.contributor.authorCsizmadia Imre Gyulahu
dc.contributor.authorMizsey Peterhu
dc.contributor.authorSvend Knak Jensenen
dc.contributor.authorViskolcz Bélahu
dc.contributor.authorBela Fiseren
dc.contributor.authorFiser Bélahu
dc.contributor.authorФішер Бейлоuk
dc.date.accessioned2025-01-28T12:58:27Z-
dc.date.available2025-01-28T12:58:27Z-
dc.date.issued2020-05-
dc.identifier.citationIn Chemical Physics Letters. 2020. Volume 746. 6 p.en
dc.identifier.issn0009-2614 (Print)-
dc.identifier.issn1873-4448 (Online)-
dc.identifier.otherDOI: https://doi.org/10.1016/j.cplett.2020.137298-
dc.identifier.urihttps://dspace.kmf.uz.ua/jspui/handle/123456789/4624-
dc.description.abstractAbstract. Carbon dioxide can be converted into fine chemicals such as methanol and thus, the produced renewable energy can be stored in chemical bonds through reductions. To achieve this, a water enhanced mechanism of CO2 hydrogenation leading to methanol has been designed by applying 1:3 (CO2 + 3H2) extended with a water molecule and a hydronium. The thermodynamic properties of the intermediate species and transition states have been calculated by using the W1U composite method. The energy efficiency of the studied mechanism is 27.1%. By understanding the mechanism, special purpose catalysts can be designed to accelerate carbon dioxide conversion.en
dc.description.sponsorshipThis research was supported by the European Union and the Hungarian State, co-financed by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016-00004 project, aimed to promote the cooperation between the higher education and the industry.en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseries;Volume 746.-
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectCarbon dioxide hydrogenationen
dc.subjectClimate changeen
dc.subjectComputational studyen
dc.subjectEnergy storageen
dc.titleWater enhanced mechanism for CO2 – Methanol conversionen
dc.typedc.type.collaborativeen
Appears in Collections:Fiser Béla

Files in This Item:
File Description SizeFormat 
Fiser_et_al_Water_enhanced_mechanism_Methanol_conversion_2020.pdfIn Chemical Physics Letters. 2020. Volume 746. 6 p.1.2 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons