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On representations of the group of order two
over local factorial rings in the weakly
modular case

Vitaliy M. Bondarenko, Myroslav V. Stoika

Communicated by V. V. Kirichenko

ABSTRACT. We study representations of the group of order 2
over local factorial rings of characteristic not 2 with residue field of
characteristic 2. The main results are related to a sufficient condition
of wildness of groups.

Introduction

A group G is called wild over an commutative ring K, if the problem of
classifying its matrix K-representations contains the problem of classifying
the pairs matrices, up to similarity, over a field k. Otherwise, GG is called
tame over K. When K is a field of characteristic p (p > 0), a finite group
G is tame if and only if its every noncyclic abelian p-subgroup has order
at most 4 [1]. In particular,

1) in the classical case, when the order of G is not divisible by p,
the group G is always tame and even has, up to equivalence, only finite
number of indecomposable representations;

2) in the modular case, when the order of G is divisible by p, the
group G has only finite number of indecomposable representations if and
only if its Sylow p-subgroup G, is cyclic; when it is not, then G is tame
if and only if p = 2 and G2/[G2, G2] = (2,2).

2010 MSC: 20C15, 20C20, 16G60.
Key words and phrases: free algebra, factorial ring, maximal ideal, perfect
representation, wild group.
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For commutative rings such problem, in general case, is not solved. The
first work in this direction is due to the first author [2]. If one talks about
integral domains, then in the weakly modular case, i.e. when the order of
G is not divisible by the characteristic p of a ring K but is divisible by
the characteristic of the residue field [3], a criterion of wildness of G over
a local ring K was obtained, in particular, in the following cases:

1) K = Z,, is the ring of p-adic rational numbers [4];

2) K = R, is the ring of integers of a finite extension F, of the field
p-adic rational numbers [5];

3) G is a p-group, K is a ring of formal power series in n variables
over a complete discrete valuation ring of characteristic 0 with residue
field of characteristic p [6].

Wildness of p-groups of order greater than p was studied in [6] for
p > 2 and in [7,8] for p = 2. Note that the smaller order of the group,
the harder to find conditions of its wildness.

In this paper we study the case when the order of GG is equal to 2.

1. Formulation of the main results

Let K be a local integral domain with maximal ideal R and residue
field k, and G be a group. A matrix representation I' of G over the free
(associative) K-algebra ¥ = K (z,y) is said to be perfect if from the
equivalence of the representations ' @ T and I' ® 7" of G over K, where
T,T’" are matrix representations X over K, it follows that 7' and T” are
equivalent modulo R. Following Yu. Drozd [9, pp. 70-71] we call the group
G wild over K if it has a perfect representation over 1.

Recall some definitions on integral domains.

A prime element, or simply a prime, of an integral domain K is, by
definition, a non-unit (non-invertible) element ¢ such that whenever c|ab
for some a,b € K, then c|a or ¢|b. The element ec with € to be a unit is
called associated to c.

A factorial ring K is an integral domain in which every non-zero non-
unit element x can be written as a product of prime elements, uniquely
up to order and unit factors. The number [(x) of the prime factors of x is
called the length of x.

!The problem of allocation of wild objects (relative to different equivalences) has
long been one of the main problems of modern representation theory. Besides classical
objects (groups, algebras, rings, etc.) there are such well-known objects as directed
graphs (quivers) and posets, both with various additional conditions (see, e.g. [10] — [13]
for graphs and [14] — [21] for posets).
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By different prime elements of K we mean non-associated ones.
The aim of this paper is to prove the following theorem.

Theorem 1 (on six twos). Let G be the group of order 2 and K a local
factorial ring of characteristic not 2 with residue field of characteristic 2.
If K has 2 different primes and [(2) > 2, then G is wild.

Corollary 1. Let G be a (finite or infinite) group with a factor group to
be a finite 2-group, and K be as in Theorem. Then G s wild.

2. Auxiliary propositions

In this section K is a local integral domain with maximal ideal R.

Lemma 1. Let 2 =ty tot (in K), where t1, to are different primes, t € R,
and let
tir + 3y + titez = 2w (1)

for some x,y,z,w € K. Then x =y =2 =0 (mod R).
Proof. From 2 =t;tyt and (1),
to(toy + t1z — titw) = —t3x (2)

whence t9|x and therefore z = 0 (mod R). Let = toa’. Then we have
from (2) (after reducing by t2 and elementary transformations) that

t1(z + 12’ — tw) = —tay
whence t1]y and t2]z + t12” — tw; consequently y = 2z =0 (mod R).
Lemma 2. Let 2 = t3t (in K), where t is a prime, t € R, and let
122 + t3y + titor = 2w (3)

for some x,y,z,w € K and a prime to #= t1. Then x =y = z = 0
(mod R).

Proof. From 2 = t3t and (3),
t1(t1x + taz — titw) = —t3y (4)

whence t1]y and therefore y = 0 (mod R). Let y = t13’. Then we have
from (4) (after reducing by t; and elementary transformations) that

t(z — tw) = —ta(z + ta2y)

whence ta|x — tw) and 1|z + t2y’; consequently 2 = 2z =0 (mod R).
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3. Proof of Theorem

Let G = (g|g? = e). It is natural to identify a matrix representations
T of ¥ = K{x,y) over K with the ordered pair of matrices T'(x),T(y);
if these matrices are of size m x m, we say that T is of K-dimension m.
Then, for a matrix representation I' of the group G over K (see above the
definition of a wild group) and 7" of K-dimension m, the matrix (I'®7")(g)
is obtained from the matrix I'(¢) by change = and y on the matrices T'(x)
and T'(y), and a € K on the scalar matrix aE,,, where E,, is the identity
m X m matrix.

From the conditions of the theorem it follows immediately that
1) 2 = tytot with t1,t5 to be different primes and ¢ € R, or

2) 2 = t2t with ¢; to be a prime and t € R.

Consider first case 1).

We prove that the representation I' of G over X of the form

1 0 0|tits 22 0
0 1 0| t3 tity tiy
. 00 1| 0 3 tits
Poo= 150 0=1 0 o0
000/ 0 -1 0
000/ 0 0 -1

is perfect.

Let T = (A, B) and T’ = (A’, B’) be matrix representations of ¥ over
K of a K-dimension n. Then

E, 0 0 |ttE, #A 0
0 E, 0| t3E, ttE, #B
|l 0o o0 E | 0 tB3E, titE, |
TeDW =500 & o0 0o |~
0 0 0 0 ~E, 0
0 0 0 0 0 -E,

_ E?m t%M(Aa B) + t%N + t1t2E3n
B 0 _E3n
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and
E, 0 0| E, t3A" 0
0 E, 0 |tE, E, 8B
o+ | 0 0o E, 0 #E, E, | _
TeT)9=——"o 0 -E o0 0 |
0 0 0 0o —-E, 0
0O 0 0 0 0 —FE,
_( B3, t3M(A',B") +t3N + t1taEs,
N 0 _E?m ’
where
0 A 0 0 A 0
M(AB)=|0 0 B |, MA,B)Y)=|0 0 B
0 0 0 0 0 0
and
0 0 0
N=|E, 0 0
0 E, 0

Assume that the representations I'(A, B) and I'(A’, B) are equiva-
lent, i. e. there exists an invertible matrix C' such that (I' ® T')(g)C =
C(T'®T")(g). So we have the equality

( Ejs, t%M(A,B) —|—t%N+t1t2E3n > ( C; Oy )

0 _ESn C13 04
(5)

03 04 0 _E3n

[ G Oy
on blocks is compatible with those of (I' ® T')(g), (T ® T")(g).
The equality (5) is equivalent to the following ones:

C1+ t%M(A, B)Cs + t%NCg + t1t2C3 = (Y,

Cy +t1M(A, B)Cy + t3ANCy + t1t2Cy
= t101 M (A, B') + t3C1 N + 1207 — Co,

—C3 = (s,
—Cy = t%CgM(A/, B/) + t%C?,N + t1t2C3 — Cy.

_ ( C, Co ) ( Esn 2M(A,B') + 12N + t1t2Esy, )

where the partition of
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In turn, these equations are equivalent to the equations C3 = 0 and
t3(M(A, B)Cy—C1M(A', B")) +13(NCy — C1N) +t1t5(Cy — C1) = —2C5.

By applying Lemma 1 to all scalar equations of the last matrix equation,
we easily see that

M(A,B)Cy = CiM(A', B') (mod R),
NC4=CiN (mod R), Cy=C;(mod R),
or equivalently,
M(A,B)C; = CiM(A', B') (mod R), (6)
NC; = CiN (mod R). (7)

From Cs = 0 it follows that the block C; of the (invertible) matrix C
is invertible. Put

Ci1 Cia Cis
Ci=| Oy Ca Uy
C31 Cza Cs3

and write (7) in the expanded form:

En 0 0 021 022 023 =
0 FE, O C31 Cs2 Cs3
= 021 022 023 En 0 0 (mod R)
C31 Cs2 Cs3 0 FE, O

(the partition of C on blocks is compatible with those of N). From this
we have

0O 0 0 Ci2 Ci3 0
011 012 013 = 022 023 0 (mod R),
Co1 Caz Cag Cs3p C33 0

whence 012 = 013 = 023 = O(mod R), 011 = 022 = 033 (mod R),
C91 = (32 (mod R), and therefore

Cn1 0 0
Cl = Cgl Cll 0 (mod R) (8)
C31 Co1 Chy
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with C'1; being invertible modulo R.
From (6) and (8),

0O A O C1q 0 0
0O 0 B Cyn Cia 0 =
0 0 O C31 Co1 Chy
Ciy 0 0 0 A 0 ’
= 021 Cll 0 0 0 B/ (mod R)

or equivalently

ACQl ACH 0 0 CHAI 0
BCgl BCgl BCll 0 CglA/ C11B, (mod R)
0 0 0 0 C51A" CuB

From this, in particular, we have
ACH = CllAl (mod R), BCH = CllB/ (mod R),

as required.

Now consider case 2.

In this case we take as a perfect representation I' of G over X the
representation of the same form as in case 1) with ¢2 to be any prime
element different from ¢; (it exists by the condition of the theorem). Then
the proof is analogously to that in case 1), but it is need to use Lemma 2
instead of Lemma 1.
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