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FIXED AND RESIDUAL MODULES

The article deals with the properties of fixed and residual endomorphism submodules of modules
over arbitrary associative rings with 1. It is shown how they can be used to represent formal
matrices images of group homomorphisms generated by elementary transvections when 2 or 3
elements are circulating in the ring. The homomorphisms with condition (*) are described with
the help of this approach.

Ó ðîáîòi ðîçãëÿäàþòüñÿ âëàñòèâîñòi íåðóõîìèõ òà ëèøêîâèõ ïiäìîäóëiâ åíäîìîðôiçìiâ ìîäó-
ëiâ íàä äîâiëüíèìè àñîöiàòèâíèìè êiëüöÿìè ç îäèíèöåþ. Ïîêîçàíî ÿê ç ¨õ äîïîìîãîþ ìîæíà
çîáðàæàòè ôîðìàëüíèìè ìàòðèöÿìè ãîìîìîðôíi îáðàçè ãðóï ïîðîäæåíèõ åëåìåíòàðíèìè
òðàíñâåêöiÿìè ó âèïàäêàõ êîëè åëåìåíòè 2 àáî 3 ¹ îáîðîòíèìè â êiëüöi. Çà äîïîìîãîþ öüîãî
ïiäõîäó îïèñàíi ãîìîìîðôiçìè ç óìîâîþ (*).

Introduction. Let R and K be associative ring with 1. E (n,R) is the subgroup
of GL (n,R) , generated by all elementary transvections tij(r) = 1 + reij, r ∈ R,
1 ≤ i ̸= j ≤ n, tij = tij (−1) tji (1) tij (−1) .

The group homomorphisms of Λ : G→ GL (W ) , E (n,R) ⊆ G ⊆ GL (n,R) , n ≥
4 described in [1], if W is its left K-module of finite dimension, Λ is an isomorphism,
G = GL (n,R) and [2, 3], if W is an arbitrary (not necessarily free) left K-module
and Λ is an homomorphism with condition (*).

Recall that a homomorphism Λ satisfies the condition (*) if for any nonzero
nilpotent element m ∈ EndW, m2 = 0 there are natural numbers s1 and, which are
working in K and h ∈ G such that Λh = 1+ s1m and of equality Λh ·Λg = Λg ·Λh,
g ∈ G it follows that hs2g = ghs2 .

It turns out that while describing homomorphism with the condition (*) among
which are isomorphisms, key role is played by fixed and residual submodules and
modules that they generate. Since the possibility of such an approach is seen endless,
it is justified to have a more thorough study of the properties of fixed and residual
submodules. The article reflects the efforts of the authors on the above-mentioned
direction.

1. General properties of fixed and residual submodules. Let V be
arbitrary R-module over the associative ring R with 1, σ an arbitrary endomorphism
of module V.

Residual and fixed submodules of V module endomorphism σ will be called
submodules R (σ) = (σ − 1)V and P (σ) = ker (σ − 1) respectively. Then R (σ) =
{(σ − 1) v | v ∈ V } and P (σ) = {v ∈ V | σv = v} , also R (1− σ) = σV and P (1−
σ) = kerσ.

It is easy to see that if σ is an automorphism of module V, then with the equality
σ−1 − 1 = (σ − 1) (−σ−1) it follows that

R (σ−1) = R (σ) and P (σ−1) = P (σ) .
Then σV0 = (σ−1+1)V0 ⊆ R(σ)+V0 , σ

−1V0 = (σ−1−1+1)V0 ⊆ R(σ−1)+V0 =
R(σ) + V0 , if V0 is a submodule of V. In particular if R (σ) ⊆ V0 then σ±1V0 ⊆ V0
and σV0 = V0.

If g is an arbitrary endomorphism of module V such that gσ = σ±1g, then
g (σ − 1) = (σ±1 − 1) g and (σ − 1) g = g (σ±1 − 1) . That is why
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gR (σ) ⊆ R (σ±1) = R (σ) and gP (σ) ⊆ P (σ±1) = P (σ) .
It is followed that if g is an automorphism of module V such that gσg−1 = σ±1,

then
gR (σ) = R (σ) and gP (σ) = P (σ) .

This statement also follows from the general formulas
gR (σ) = R (gσg−1) and gP (σ) = P (gσg−1) ,

which due to the equality gσg−1 − 1 = g (σ − 1) g−1 is true for any endomorphism
σ of module V and any isomorphism g of module V.

There are the obvious inclusions
R (σ1σ2) ⊆ R (σ1) +R (σ2) , P (σ1σ2) ⊇ P (σ1)

∩
P (σ2) ,

arising from the equalities σ1σ2 − 1 = (σ1 − 1)σ2 + σ2 − 1 = σ1 (σ2 − 1) + σ1 − 1.
In particular if [σ1,σ2] = σ1σ2σ

−1
1 σ−1

2 , then

R([σ1,σ2]) = R (σ1) +R(σ2σ1σ
−1
2 ) ⊆ R (σ1) + σ2R(σ1) ⊆ R (σ1) +R(σ2),

P ([σ1,σ2]) ⊇ P (σ1)
∩

P (σ2).

It is obviously that (σ1− 1)(σ2− 1) = (σ2− 1)(σ1− 1) if and only if σ1σ2 = σ2σ1

and (σ1 − 1)(σ2 − 1) = (σ2 − 1)(σ1 − 1) = 0 if and only if

{
R (σ1) ⊆ P (σ2);
R (σ2) ⊆ P (σ1).

Then, if

{
R (σ1) ⊆ P (σ2);
R (σ2) ⊆ P (σ1),

then σ1σ2 = σ2σ1 .

If σ1σ2 = σ2σ1 , then (σ1 − 1)(σ2 − 1)V = (σ2 − 1)(σ1 − 1)V ⊆ R (σ1)
∩

R(σ2) ,

(σ1 − 1)(σ2 − 1)(P (σ1) + P (σ2)) = (σ2 − 1)(σ1 − 1)(P (σ1) + P (σ2)) = 0. Then, if{
σ1σ2 = σ2σ1;
R (σ1)

∩
R(σ2) = 0 or P (σ1) + P (σ2) = V ,

then (σ1−1)(σ2−1) = (σ2−1)(σ1−

1) = 0 . Then

{
R (σ1) ⊆ P (σ2)
R (σ2) ⊆ P (σ1)

. It is easy to see that σ2 = 1 if and only if

σ(σ− 1) = −(σ− 1) if and only if σ
∣∣
R(σ) = −1. It turns out that fixed and residual

submodules of finite order, which is reversible in the ring are matched with the
Peirce decomposition of idempotents which they defined.

Lemma 1. Let R be an associative ring with 1, V is left R- module (not necessar-
ily free), σ ∈ GL (V ) , σm = 1 , m ∈ R∗ , e = (1 + σ + · · ·+ σm−1)m−1 . Then e2 =
e is an idempotent, V = R (σ)⊕P (σ) , where P (σ) = {v ∈ V |(σ − 1) v = 0} = eV
and

R (σ) = {v ∈ V |(1 + σ + · · ·+ σm−1) v = 0} = (1− e)V.

Proof. Because eσi = σie = e to all i ≥ 0 , then
e2 = e (1 + σ + · · ·+ σm−1)m−1 = e

is an idempotent and the Peirce decomposition is used V = eV ⊕ (1− e)V , where
v = ev + (1− e) v, v ∈ V. It is clear that

eV = {v ∈ V |(1− e) v = 0} = ker (1− e)
and (1− e)V = {v ∈ V |ev = 0} = ker e . Because e (1− σ) = (1− σ) e = 0
and 1 − e = (1− σ) t , where t ∈ EndV and σt = tσ, then eV ⊆ P (σ) ⊆
ker (1− e) = eV and (1− e)V ⊆ R (σ) ⊆ ker e = (1− e)V . Thus it is proved
that P (σ) = eV = ker (1− e) = {v ∈ V |(σ − 1) v = 0} , R (σ) = (1− e)V =
ker e =

{
v ∈ V

∣∣(1 + σ + · · ·+ σm−1
)
v = 0

}
.
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Note that σ−1 is a reversible element to R (σ) . Indeed, e−1 = (σm−1 − 1 + · · ·
+σ − 1)m−1 , eR (σ) = 0 , σm−1 − 1 + · · · + σ − 1 = −mE to R (σ) . Similarly,
σ−1 − 1 is a reversible element to R (σ−1) = R (σ) .

In particular, ifm = 2 ∈ K∗, then P (σ) = {v ∈ V |σv = v} , R (σ) = {v ∈ V |σv
= −v} .

If m = 3 ∈ K∗ , then σ3 = 1 , P (σ) = {v ∈ V |σv = v} , R (σ) = {v ∈ V |(1 + σ
+σ2) v = 0} .

Lemma 2. Let K be an associative ring with 1, m ∈ K∗, a, b ∈ EndV, am =
bm = 1, ab = ba. Then

P (a)
∩

P (ab) = P (a)
∩

P (b) = P (b)
∩

P (ab) ,

P (a)
∩
R (ab) = P (a)

∩
R (b) , P (b)

∩
R (ab) = P (b)

∩
R (a) ,

R (a)
∩
P (ab) ⊆ R (a)

∩
R (b) , R (b)

∩
P (ab) ⊆ R (b)

∩
R (a) .

Proof. From the properties of fixed and residual submodules of the elements of
finite order, which are described in Lemma 1 the equalities arise,{

P (a)
∩
P (ab) = P (a)

∩
P (b);

P (b)
∩
P (ab) = P (a)

∩
P (b),

{
P (a)

∩
R (ab) = P (a)

∩
R (b);

P (b)
∩
R (ab) = P (b)

∩
R (a).

Let v ∈ P (ab) be. Then abv = v and av = b−1v , bv = a−1v . By induction
alv = b−lv , blv = a−lv to all l ≥ 0 . That is why R (a)

∩
P (ab) ⊆ R (a)

∩
R (b) ,

R (b)
∩
P (ab) ⊆ R (b)

∩
R (a) .

Corollary 1. Let K be an associative ring with 1, m ∈ K∗, a, b ∈ EndV,
am = bm = 1, ab = ba. If m = 2 ∈ K∗, then R (a)

∩
R (b) = R (a)

∩
P (ab) =

R (b)
∩
P (ab) . If m = 3 ∈ K∗, then b = a on R (a)

∩
R (b)

∩
R (ab) and b = a2 on

R (a)
∩
R (b)

∩
P (ab) .

Proof. In the case of m = 2 ∈ K∗ the inclusions of Lemma 2 are converted
to equality. Indeed, in this case, R (a)

∩
R (b) = {v ∈ V |av = −v, bv = −v} ⊆

{v ∈ V |abv = v} ⊆ P (ab) . That is why R (a)
∩
R (b) = R (a)

∩
P (ab) = R (b)

∩
P (ab) . In particular,

R (a)
∩
R (b)

∩
R (ab) = 0 , R (a)

∩
R (b)

∩
P (ab) = R (a)

∩
R (b) .

In the case of m = 3 it is revealed (b− a) ν = 0 , if ν ∈ R (a)
∩
R (b)

∩
R (ab) and

(b− a2) ν = 0 , if ν ∈ R (a)
∩
R (b)

∩
P (ab) . Indeed, if ν ∈ R (a)

∩
R (b)

∩
R (ab) ,

then (
a2 + a+ 1

)
ν =

(
b2 + b+ 1

)
ν =

(
(ab)2 + ab+ 1

)
ν = 0

So, (ab− 1) (a− b) ν = (a2 + ab + a)(a − b)ν = a (a+ b+ 1) (a− b) ν = a
(
a2 − b2

+a− b) ν = 0 . Consequently there is the equality
0 =

(
(ab)2 + ab+ 1

)
(a− b) ν = 3 (a− b) ν.

Thus it is proved that (a− b) ν = 0 for ν ∈ R (a)
∩
R (b)

∩
R (ab) .

Obviously, if ν ∈ R (a)
∩
R (b)

∩
P (ab) , then abν = ν and (b− a2) ν = 0 .

Lemma 3. Let a, b be some elements of associative ring K with 1, 3 ∈ K∗ such
that b2 = 1, a2 + a + 1 = 0, bab−1 = a2, e = (1− a) (1− b) 3−1. Then e2 = e,
eae = (1− e) a2 (1− e) = 0.

Proof. It is hard not to see that b (1− b) = − (1− b) and (1− b) (1− a)
(1− b) = (1− a− b+ ba) (1− b) = (1− a+ 1− a2) (1− b) = 3 (1− b) . That is
why (3e)2 = (1− a) 3 (1− b) = 9e and e2 = e . Similarly, it can be proved that
(1− b) a (1− a) (1− b) = (a− a2 − ba+ ba2) (1− b) = (a− a2 + a2 − a) (1− b) =
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0 . That is why 9eae = (1− a) (1− b) a (1− a) (1− b) = 0 and eae = 0 . So,
ea2e = e (−1− a) e = −e . It is easy to see that (1− b) a2 + a2 (1− b) = 2a2 −
(a+ a2) b = 2a2 + b . That is why 3 (ea2 + a2e) = (1− a) ((1− b) a2 + a2 (1− b)) =
(1− a) (2a2 + b) . Thus it is proved that

3 (1− e) a2 (1− e) = 3a2 − 3 (ea2 + a2e) + 3ea2e = 3a2 − (1− a) (2a2 + b)− 3e =
= 3a2 − (1− a) (2a2 + b+ 1− b) = 3a2 − (1− a) (2a2 + 1) = 0

and (1− e) a2 (1− e) = 0.
Lemma 3 implies that ae = (1− e) ae and a2 (1− e) = ea2 (1− e) . It is possible

to convince that e1 = e − ab is also an idempotent which satisfies the equality
e1ae1 = (1− e1)a

2(1− e1) = 0 . Besides that (a2b− 1)e1 = 0 . It can be proved that
e1 is unambiguously certain idempotent which is a linear combination of elements
of group ⟨a, b⟩ with the whole coefficients and satisfies above-mentioned equalities.

2. Image of endomorphism by formal matrices.

Lemma 4. Let K be an associative ring with 1, 3 ∈ K⋆, W be left K-module, a, b
be elements GL(W ) such that a3 = b2 = 1, bab−1 = a−1. Then there are isomorphism
modules g : W −→ Wg, which induces isomorphism Λg : GL(W ) −→ GL(Wg) so
that the elements Λga, Λgb can be represented by formal matrices

Λga = diag

((
0 −1
1 −1

)
, 1

)
, Λgb = diag

((
α β

α + β −α

)
, γ

)
.

where α, β ∈ EndL, γ ∈ EndP , αβ = βα, α2+αβ+β2 = 1, γ2 = 1, Wg = L⊕L⊕P .
In particular, if W = R(a), then

Λga =

(
0 −1
1 −1

)
, Λgb =

(
α β

α + β −α

)
.

Proof. Let R(a) = (a − 1)W and P (a) = ker(a − 1). Submodule R(a) and
P (a) is relatively invariant a and b, a2 + a + 1 = 0 for submodules R(a) and a = 1
for submodules P (a). Let e = (1 − a)(1 − b)3−1, where 1 means a unit of GL(W ).
Obviously, submodules R(a) and P (a) are relatively invariant e. Narrowing items
a, b, e for submodules R(a) satisfying lemma 4. Because eP (a) ⊆ (1 − a)P (a) = 0,
then e2 = e = 0 on P (a). Therefore e2 = e – idempotent on R(a). This means that
e2 = e – idempotent rings EndW , which defines the schedule module W ,

W = R(a)⊕ P (a) = eR(a)⊕ (1− e)R(a)⊕ P (a), where
R(a) = eR(a)⊕ (1− e)R(a).

Let L = eR(a), P = P (a). Since a ̸= 1, then R(a) ̸= 0. Under the lemma 4
aeR(a) ⊆ (1 − e)R(a) and a2(1 − e)R(a) ⊆ eR(a), (1 − e)R(a) ⊆ aeR(a). So,
(1 − e)R(a) = aeR(a) = aL. Thus it is proved that R(a) = L ⊕ aL, L ̸= 0,
W = L ⊕ aL ⊕ P . Let Wg = L ⊕ L ⊕ P and g : W −→ Wg be an isomorphism of
modules, which is defined by the rules g(l1 + al2 + p) = l1 + l2 + p, where l1 ∈ L,
1 ≤ i ≤ 2, p ∈ P , and Λg : GL(W ) −→ GL(Wg) – induced g group isomorphism.
This means that the elements of the ring End(Wg) can be represented by formal
3× 3 matrices

Λga = diag

((
0 a1
1 a2

)
, 1

)
, Λgb = diag

((
b1 b2
b3 b4

)
, γ

)
.

Given equality (1+a+a2)R(a) = 0 get that a1 = a2 = −1. With equality ba = a−1b
it follows that b3 = b2, b4 = −b1 and with equality b2 = 1 get that b1b2 = b2b1,
b21 + b1b2 + b22 = 1. Let α = b1 and β = b2. Then
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Λga = diag

((
0 −1
1 −1

)
, 1

)
, Λgb = diag

((
α β

α + β −α

)
, γ

)
where α, β ∈ EndL, γ ∈ EndP , αβ = βα, α2 + αβ + β2 = 1. γ2 = 1.

If instead of the idempotent e we choose the idempotent e1 = e−ab it is possible
to prove that α = 0 as β = 1 .

Lemma 5. Let K be an associative ring with 1, 3 ∈ K∗ , V be a left K-module,
a, b ∈ GL (V ) , a3 = b3 = 1 , ab = ba . Then a and b can be represented by the formal
matrices a = diag (z, E, x, y, E) , b = diag (E, z1, x, y

2, E) , where x2 + x + 1 = 0 ,
y2 + y + 1 = 0 , z2 + z + 1 = 0 , z21 + z + 1 = 0 .

Proof. Submodules R (a) , R (b) , P (a) , P (b) are invariant relatively to
the elements a and b and there are decompositions V = R (a) ⊕ P (a) , R (a) =
R (a)

∩
R (b) ⊕ R (a)

∩
P (b) , P (a) = P (a)

∩
R (b) ⊕ P (a)

∩
P (b) Because of

(ab)3 = 1 , the decompositions is also occured

R (a)
∩

R (b) = R (a)
∩

R (b)
∩

R (ab)⊕R (a)
∩

R (b)
∩

P (ab)

This means that there is a decomposition of the module V in to the direct sum of
modules (some of which may be zero)

V = R (a)
∩
P (b)⊕ P (a)

∩
R (b)⊕R (a)

∩
R (b)

∩
R (ab)⊕

⊕R (a)
∩
R (b)

∩
P (ab)⊕ P (a)

∩
P (b)

Thus it is proved that the elements a and b have a image which is shown in Lemma
5. Because of (x− 1) (x+ 2) = −3 = (x2 − 1) (x+ 1) , then x − 1 , x2 − 1 and
similarly y − 1 , y2 − 1 , z − 1 , z2 − 1 , z1 − 1 , z21 − 1 are circulating on the
respective non-zero submodules. It is followed from Lemma 5 that if such an element
t ∈ EndV commutes with the product ab = diag (z, z1, x

2, E, E) then t has a form
of t = diag (t1, t2) , where t1 commutes with diag (z, z1, x

2) . In particular if t ∈
GL (V ) , R (a)

∩
P (b) = R (b)

∩
P (a) = 0, then V = R (a)

∩
R (b)⊕P (a)

∩
P (b) ,

ab = diag (x2, E,E) , ab2 = diag (E, y2, E) , t1 commute with x2 and as it followed
that with x = −x2 + 1 , [a, t] = diag (E, ∗) , [b, t] = diag (E, ∗) . In this case the
elements in the form of diag (T, 0, 0) commute with the elements ab2 , [a, t] , [b, t]
for any T ∈ End (R (a)

∩
R (b)

∩
R (ab)) .

Lemma 6. Let K be an associative ring with 1, 3 ∈ K∗ , V be a left K-module,
a, b, c, d, t ∈ GL (V ) , a3 = b3 = 1 , ab = ba , b ̸= a2 , cac−1 = a2, cbc−1 = b2,
c2 = 1, dad−1 = b , d2 = 1 , tab = abt . Let to any m ∈ EndV , m2 = 0 in condition
of m commutes with ab2 , [a, t] , [b, t] it is followed that m commutes with a. Then
R (a)

∩
P (b) ̸= 0 .

Proof. Let R (a)
∩
P (b) = 0. Then R (b)

∩
P (a) = d (R (a)

∩
P (b)) = 0, V =

R (a)
∩

R (b)
∩

R (ab) ⊕ R (a)
∩

R (b)
∩

P (ab) ⊕ P (a)
∩

P (b) , a = diag (x, y,

E) , b = diag (x, y2, E) , where x2 + x + 1 = 0, y2 + y + 1 = 0. Because of b ̸=
a2, then R (a)

∩
R (b)

∩
R (ab) ̸= 0. According to Lemma 4 we can assume that

x =

(
0 −1
1 −1

)
. Let m = diag

((
0 1
0 0

)
, 0, 0

)
. As noted above, m commutes

with ab2 , [a, t] , [b, t]. According to the condition m commutes with a. However,
according to the form m does not commutes with a. From this contradiction it is
followed that R (a)

∩
P (b) ̸= 0 .
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Theorem 1. Let K be an associative ring with 1, 2 ∈ K∗ , W be left K-module,
a,b,c,d be the elements of group GL (W ) such that a2 = b2 = 1, ab = ba, ca =
ac, cbc−1 = ab, db = bd, dad−1 = ab, a ̸= 1. Then there is the isomorphism of
modules g : W → Wg, which induces isomorphism Λg : GL (W ) → GL (Wg) so
that the elements Λga, Λgb, Λgc, Λgd can be represented by formal matrices Λga =

diag (−1,−1, 1, 1) , Λgb = diag (1,−1,−1, 1) , Λgc = diag

((
0 α
1 0

)
, β, γ

)
, Λgd =

diag

(
β1,

(
0 α1

1 0

)
, γ1

)
, where α, β, α1, β1 ∈ EndL, γ, γ1 ∈ EndP, Wg = L⊕L⊕

L⊕ P.

Proof. By condition R (a) ̸= 0, bR (a) = R (a) , bP (a) = P (a) . Therefore, there

is a decomposition W = R (a) ⊕ P (a) = R (a)
∩

R (b) ⊕ R (a)
∩

P (b) ⊕ P (a)
∩

R (b) ⊕ P (a)
∩
P (b) . Let L = R (a)

∩
P (b) , P = P (a)

∩
P (b) . Then cL =

R (a)
∩
P (ab) = R (a)

∩
R (b) and dcL = R (ab)

∩
R (b) = P (a)

∩
R (b) . Because of

R (a) = L⊕cL ̸= 0, than L ̸= 0 andW = L⊕cL⊕dcL⊕P, whereWg = L⊕L⊕L⊕P.
Let us consider the isomorphism of the modules g : W → Wg, which is defined by the
rule g (l1 + cl2 + dcl3 + p) = l1+ l2+ l3+p, where li ∈ L, 1 ≤ i ≤ 3, p ∈ P and group
homomorphism Λg : GL (W ) → GL (Wg) which is induced by the isomorphism of
the modules g : W → Wg, where Λgσ = gσg−1 for all. We represent the elements of
the ring by formal matrices. In particular, we find that Λga = diag (−1,−1, 1, 1) ,
Λgb = diag (1,−1,−1, 1) , where 1 is a unit of EndL or EndP a ring respectively.
Beside this,

c2L = cR(a) ∩ P (b) = R(a) ∩ P (ab) = L,
cdcL = cdR(a) ∩R(b) = P (a) ∩R(ab) = cL,

cP = P (a) ∩ P (ab) = P .
Therefore

Λgc = diag

((
0 α
1 0

)
, β, γ

)
,

where α, β ∈ EndL, γ ∈ EndP . Similarly proved that dcL = cL, d2L = L, dP = P
and

Λgd = diag

(
β1,

(
0 α1

1 0

)
, γ1

)
,

where α1, β1 ∈ EndL, γ1 ∈ EndP .
In particular, if c2 = a, then α = −1, β2 = 1, γ2 = 1. If c2 = 1, then α = 1,

β2 = 1, γ2 = 1. Thus, Theorem 1 is proved.

Remark 1. If G be a group such that E(n,R) ⊆ G ⊆ GL(n,R), where R is
an associative ring with 1, n ≥ 3 and Λ : G −→ GL(W ) is non-trivial arbitrary
homomorphism, who in the group GL(W ) as elements a, b, c, d, appearing in the
Theorem 1, provided Λtij(2) ̸= 1 you can choose

a = Λdiag (−1,−1, 1, . . . , 1), b = Λdiag (1,−1,−1, 1, . . . , 1),

c = Λdiag

((
0 −1
1 0

)
, 1, . . . , 1

)
, d = Λdiag

(
1,

(
0 −1
1 0

)
, 1, . . . , 1

)
.

This c2 = a, d2 = b. If Λtij(2) ̸= 1 for some, and hence for all 1 ≤ i ̸= j ≤ n, then
as elements a, b, c, d elements can be selected a = Λt12(1), b = Λt13(1), c = Λt32(−1),
d = Λt23(−1).

In fact, according to the formula [tij, tjk (1) , tij (r)] = tik (−r) , where 1 ≤
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i, j, k ≤ n are pairly different numbers, there is an inequality a ̸= 1 .

Theorem 2. Let K be an associative ring with 1, 3 ∈ K∗ , W be a left K-
module, a,b,c,d are the elements of group GL (W ) such that a3 = b3 = 1, ab = ba,
cac−1 = a−1, cbc−1 = b−1, c2 = 1, dad−1 = b, d2 = 1, dc = cd, R (a)

∩
P (b) ̸=

0. Then there is the isomorphism of modules g : W → Wg, which induces the
isomorphism of group Λg : GL (W ) → GL (Wg) so that the elements Λga, Λgb,

Λgc, Λgd can be represented by formal matrices Λga = diag

((
0 −1
1 −1

)
, 1, 1, α

)
,

Λgb = diag

(
1, 1,

(
0 −1
1 −1

)
, β

)
, Λgc = diag

((
0 1
1 0

)
,

(
0 1
1 0

)
, γ

)
, Λgd =

diag

((
0 E
E 0

)
, δ

)
where α, β, γ, δ ∈ EndP, α2 = β2 = 1, γ2 = δ2 = 1, αβ = βα,

γα = α2γ, δα = βδ, E = diag (1, 1) , 1 is a unit EndL or EndP respectively.

Proof. Let e = (1− a) (1− c) 3−1, f = (1− b) (1− c) 3−1 as in the Lemma
4. Then e2 = e, eae = 0, f 2 = f, fbf = 0, ded−1 = f, dfd−1 = e. W =

R (a)
∩

P (b) ⊕ R (b)
∩

P (a) ⊕ R (a)
∩

R (b) ⊕ P (a)
∩

P (b) , R (a) = eR (a) ⊕
(1− e)R (a) , R (b) = fR (b) ⊕ (1− e)R (b) As in the Lemma 4 we have ceR (a) =
(1− e)R (a) , cfR (b) = (1− f)R (b) . Under the condition dR (a)

∩
P (b) = R (b)

∩
P (a) . Let L = eR (a)

∩
P (b) , P = R (a)

∩
R (b)⊕P (a)

∩
P (b) . Then R (a)

∩
P (b)

= L⊕ cL, L ̸= 0, dL = fR (b)
∩
P (a) , R (b)

∩
P (a) = dL⊕ dcL. Thus it is proved

that W = L⊕ cL⊕ dL⊕ dcL⊕P. Let Wg = L⊕L⊕L⊕L⊕P, g : W → Wg be an
isomorphism of modules, which is defined by the rule g (l1 + cl2 + dl3 + dcl4 + p) =
l1 + l2 + l3 + l4 + p, where li ∈ L, 1 ≤ i ≤ 4, p ∈ P and Λg : GL (W ) →
GL (Wg) is an induced group homomorphism. Represent the elements of the ring

End (Wg) by formal 5 × 5 matrices Λga = diag

((
0 −1
1 −1

)
, 1, 1, α

)
, Λgb =

diag

(
1, 1,

(
0 −1
1 −1

)
, β

)
, Λgc = diag

((
0 1
1 0

)
,

(
0 1
1 0

)
, γ

)
, Λgd = diag((

0 A−1

A 0

)
, δ

)
where α, β, γ, δ ∈ EndP and A ∈ (EndL)2 are formal 2 × 2

matrix that commute with formal 2× 2 matrices

(
0 −1
1 −1

)
and

(
0 1
1 0

)
, where

1 ∈ EndL. Therefore, up to conjugation, in the formal matrix diag (A, 1, 1) we can
assume that A = 1. Thus, Theorem 2 is proved.

Remark 2. If G is a group such that E (n,R) ⊆ G ⊆ GL (n,R) , where R is
an associative ring with 1, n ≥ 4 , and Λ : G→ GL (W ) is an arbitrary non-trivial
homomorphism with condition (*) on E (n,R) , then the elements a,b,c,d, which

appear in the theorem 2 in group you can choose a = Λdiag

((
0 −1
1 −1

)
, 1, ..., 1

)
,

b = Λdiag

(
1, 1,

(
0 −1
1 −1

)
, 1, ..., 1

)
, c = Λdiag

((
0 1
1 0

)
,

(
0 1
1 0

)
, 1, ..., 1

)
,

d = Λdiag

((
0 E
E 0

)
, 1, ...., 1

)
, where E = diag (1, 1) is a single 2× 2 matrix.

In fact, according to the formula [tijtij (−1) , tjk (1) , tji (r)] = tik (−r) , where
1 ≤ i, j, k ≤ n are pairly different numbers, there is an inequality a ̸= b2. As Λ is a
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homomorphism with the condition (*), so all the other conditions of Lemma 6 are

fulfilled. Therefore, if you put t = Λdiag

((
E E
0 E

)
, E

)
in Lemma 6, then t com-

mutes with ab, where a = Λdiag (A,E,E) , b = Λdiag (E,A,E) , A =

(
0 −1
1 −1

)
∈

GL (2, R) . Let m be an arbitrary element of the ring EndW , m2 = 0, which com-
mutes with ab2 , [a, t] , [b, t] . It can be considered that m ̸= 0. Under condition (*)
there is an element h ∈ GL (n,R) such that Λh = 1 + s1m and hs2 commutes

with diag (A,A2, E) , diag

((
E A− E
0 E

)
, E

)
, diag

((
E 0

A− E E

)
, E

)
. In

this case, as the test shows, hs2 commutes with diag (A,E,E) . That is why the
element Λhs2 = 1 + s1s2m and, consequently, the element mcommute with a. Ac-
cording to the Lemma 6 R (a)

∩
P (b) ̸= 0 . Therefore the above mentioned elements

a, b, c, d satisfy the conditions of the theorem 2.
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