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FIXED AND RESIDUAL MODULES

The article deals with the properties of fixed and residual endomorphism submodules of modules
over arbitrary associative rings with 1. It is shown how they can be used to represent formal
matrices images of group homomorphisms generated by elementary transvections when 2 or 3
elements are circulating in the ring. The homomorphisms with condition (*) are described with
the help of this approach.

Y poboTi pO3rASAA0THECS BAACTUBOCTI HEPYXOMUX T4, JIUITKOBUX I IMOMYIIIB eHA0MOPQI3MiB MOIY-
JIiB HAJ IOBLIBHAMU aCOLIATUBHUMM KIIbIAMU 3 oguHUNE0. 1JoKo3aHO 4K 3 IX JOIOMOrOI0 MOXKHA
306parkatn (POPMATBHIMH MATPHIEMEA TOMOMOpdHI 06pa3u Pyl MOPOMKEHHX eJeMEHTAPHUMHI
TPAHCBEKUIsIMU Y BUIIAJIKAX KOJIM eJieMeHTH 2 abo 3 € 000poTHUMU B Kijbli. 3a I0IOMOIOK [HOI0
migxomy ommcani romomopdizmu 3 ymosoro ().

Introduction. Let R and K be associative ring with 1. E (n, R) is the subgroup
of GL (n,R), generated by all elementary transvections ¢;;(r) = 1+ re;j, r € R,
1<i#j<mn, t;=t;(=1)t;(1)t;(—1).

The group homomorphisms of A : G — GL (W), E(n,R) C G CGL(n,R),n>
4 described in [1], if W is its left K-module of finite dimension, A is an isomorphism,
G = GL(n,R) and [2, 3], if W is an arbitrary (not necessarily free) left K-module
and A is an homomorphism with condition (*).

Recall that a homomorphism A satisfies the condition (*) if for any nonzero
nilpotent element m € EndW, m? = 0 there are natural numbers s; and, which are
working in K and h € G such that Ah = 1+ sym and of equality Ah-Ag = Ag - Ah,
g € G it follows that h*2g = gh*2.

It turns out that while describing homomorphism with the condition (*) among
which are isomorphisms, key role is played by fixed and residual submodules and
modules that they generate. Since the possibility of such an approach is seen endless,
it is justified to have a more thorough study of the properties of fixed and residual
submodules. The article reflects the efforts of the authors on the above-mentioned
direction.

1. General properties of fixed and residual submodules. Let V be
arbitrary R-module over the associative ring R with 1, ¢ an arbitrary endomorphism
of module V.

Residual and fixed submodules of V module endomorphism o will be called
submodules R (0) = (0 — 1)V and P (o) = ker (6 — 1) respectively. Then R (o) =
{lc—Dv|veV}iandP(o)={veV |ov=v},alsoR(1 —0) =0V and P (1—
o) = kero.

It is easy to see that if ¢ is an automorphism of module V| then with the equality
ol —1=(0—1)(—0c7") it follows that

R(c™Y)=R(o)and P(c71) =P (o).

Then oVy = (6—1+1)Vy C R(o)+Vo,0 Vo= (67! =14+1)Vy C R(e™ 1)+ V) =
R(o) + Vg , if Vj is a submodule of V. In particular if R (o) C V then o'V, C Vj
and oV = 14.

If ¢ is an arbitrary endomorphism of module V such that go = o*'g, then
glc—1)=(c*' —1)gand (6 —1)g = g (6 — 1). That is why
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gR(c) C R(6*) = R (o) and gP (0) C P (c*) = P (o).
It is followed that if ¢ is an automorphism of module V such that gog~—! = o*!,
then
gR(0) =R (o) and gP (o) = P (o).
This statement also follows from the general formulas
gR(0) = R(gog™') and gP (¢) = P (gog™"),
which due to the equality gog=! —1 = g (0 — 1) g~! is true for any endomorphism
o of module V and any isomorphism g of module V.
There are the obvious inclusions
R (0102) C R(01) + R(02) , P(0102) 2 P(01)( P (02),
arising from the equalities o109 — 1 = (01 —1l)os+0y—1=01(00—1)+0; — 1.
In particular if [01,05] = 010907 'o5 ", then

R([o1,09]) = R(01) + R(090105,") C R(0y) + 032R(01) C R (01) + R(0y),

P([Ul,JQ 2 01 ﬂp 0'2
It is obviously that (o7 —1)(09 — 1) = (02 — 1)(07 — 1) if and only if 0109 = 0904

and (o1 — 1)(02 — 1) = (02 — 1)(01 — 1) = 0 if and only if { ggg; é ﬁggj;,
R (01) C P(03);

R(03) C P(01),

If 0'10'2 = 0901 , then (0'1 - 1)(0'2 - 1)V ( 09 — 1)(0’1 — 1)V C R 0'1 ﬂR 0'2 R
(01 —1)(og — 1)(P (01) + P(0o2)) = (02 — 1)(01 — 1)(P (01) + P(02)) = 0. Then, if

0102 = 02071; then (o; —1)(02—1) = (62 —1)(01 —

RO’l ﬂRUg)—OOTP(Ul)—l-P(Ug) V

_ R(o1) € P(02)
1) = 0. Then { R(0s) C Ploy)
o(c—1)=—(0—1) if and only if o !R(U) = —1. It turns out that fixed and residual
submodules of finite order, which is reversible in the ring are matched with the
Peirce decomposition of idempotents which they defined.

then 0109 = 0207 .

Then, if {

. It is easy to see that o* = 1 if and only if

Lemma 1. Let R be an associative ring with 1, V is left R- module (nOt necessar-
ily free), c e GL(V), 0™ =1, meR ,e=(1+0c+---+c™)ym™ . Thene?
e is an idempotent, V = R (o) ® P (¢) , where P (o) = {v e V|(o — 1)2; =0} = eV
and
Ro)={veV|l+o+ -+ Ho=0}=(1—¢)V.

Proof. Because ec’ = ole = e to all i > 0 , then
e2=e(l+o+---+o™Y)mtl=e
is an idempotent and the Peirce decomposition is used V=€V @ (1 —e) V , where
v=ev+(l—e)v,ve V. Itis clear that
eV={veV|l—ev=0}=ker(l—e)

and (1—e)V = {veV|ev=0} = kere . Because e(l—0) = (1—-0)e =0
and 1 —e = (1—o0)t , where t € EndV and ot = to, then eV C P(o) C
ker(1—e) = eV and (1—¢)V C R(0) C kere = (1 —¢)V . Thus it is proved
that P(o) = eV = ker(l1—¢) = {veVi|(lc—1)v=0}, R(o) = (1—-¢)V =
keI“e:{UGV‘(l—l—O’—I—---—FO‘m_l)U:O}
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Note that o —1 is a reversible element to R (o) . Indeed, e—1 = (6™ ! =1+ ---
+o—-1)m™* ,eR(c) =0,0™ ' —1+---+0—1=—mE to R(c) . Similarly,
o~! —11is a reversible element to R (c7!) = R (o) .

In particular, if m =2 € K*, then P (o) ={v € V|ov=v},R(c) ={v €V |ov
= —v}.

Ifm=3€K* theno®*=1,P(0c)={veV]jov=v},R(o)={veV|l+o
+o*)v=0}.

Lemma 2. Let K be an associative ring with 1, m € K*, a,b € EndV, a™ =
b™ =1, ab = ba. Then

(a)( )P (ab) = P (a ﬂP ﬂP(ab),
()ﬂwa UﬂR@) Uﬂme P(b)(VR(a),
R(a)(V P (ab) € R(a)N R (D), R(b)( P (ab) € R(b)(N R (a).

Proof. From the properties of fixed and residual submodules of the elements of

finite order, which are described in Lemma 1 the equalities arise,
{PWNWW%FJWMHP@;{fﬁwﬂRWQZPWNWNW
P ()P (ab) = P(a)\P(b), | P(b)(R(ab) = P (b)) R (a).

Let v € P (ab) be. Then abv = v and av = b~ 'v , bv = a~'v . By induction
alv = b7 blv =a W toall I > 0. That is why R (a) (P (ab) C R(a)( R (D) ,
R(b) P (ab) € R(D)(N R (a) .

Corollary 1. Let K be an associative ring with 1, m € K* a,b € EndV,
a” =b" =1,ab = ba. If m =2 € K*, then R(a)(VR(b) = R(a)( P (ab) =
RO P(ab). If m=3¢€ K*, thenb=a on R(a)(\R(b)(R(ab) and b = a* on
R(a) NV R(b) P (ab).

Proof. In the case of m = 2 € K* the 1nclusions of Lemma 2 are converted
to equality. Indeed, in this case, R (a ﬂR ={veV]w=—-v,bv=—-v} C
{veVi]abv=v} C P(ab) . That is why R (a)(R(b) = R(a)( P (ab) = R (b))
P (ab) . In particular,

R(a) R ()R (ab) =0, R(a) VR (b)) P (ab) = R(a) (R (b)
In the case of m = 3 it is revealed (b—a)v =0 ,if v € R(a)(VR(b)( R (ab) and
(b—a®)v=0,ifve R(a)R() P (ab) . Indeed, if v € R(a) R (D) R (ad) ,
then
(@®+a+1)v=>0V"+b+1)v= ((ab)2—|—ab+1)V:0

So, (ab—1)(a—b)v = (a*+ab+a)(a—bjy =a(a+b+1)(a—b)v=a(a®—b
+a —b)v =0 . Consequently there is the equality
0= ((ab)*>+ab+1) (a—b)v=3(a—b)v.
Thus it is proved that (a —b)v =0 for v € R(a) (R () R (ad) .
Obviously, if v € R(a) (R (b)) P (ab) , then abv = v and (b—a?)v =0 .

Lemma 3. Let a, b be some elements of associative ring K with 1, 3 € K* such
that ¥* = 1, a®> +a+1 =0, bab™' = a* e = (1—a)(1—0)371. Then e* = e,
eae = (1 —e€)a* (1 —e)=0.

Proof. It is hard not to see that b(1—0) = —(1—1b) and (1 —10)(1—a)
(1-b)=(1—-a—-b+ba)(1-b) = (1—a+1-—a*)(1—-0b) =3(1—5b). That is
why (3e)> = (1 —a)3(1—b) = 9¢ and €2 = e . Similarly, it can be proved that
(1-b)a(l—a) (1-0b) =(a—a*—ba+ba®)(1-0) =(a—a*+a*—a)(l—0) =
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0 . That is why 9eae = (1 —a)(1—0)a(l—a)(1—0) = 0 and eae = 0 . So,
ea’e = e(—1—a)e = —e . It is easy to see that (1 —b)a® + a®(1 —0) = 2a* —
(a4 a?)b=2a*+0b. That is why 3 (ea® + a’e¢) = (1 —a) (L —b)a* +a* (1 = b)) =
(1 —a)(2a® +b) . Thus it is proved that

3(1—e)a*(1 —e) = 3a®> — 3 (ea® + a’e) + 3ea’e = 3a®> — (1 — a) (2a®> + b) — 3e =
=3a>—(1-a)(2a®>+b+1-0b)=3a>— (1 —a)(2¢>+1)=0

and (1 —e)a®(1—e)=0.

Lemma 3 implies that ae = (1 — €) ae and a® (1 — e) = ea® (1 — €) . It is possible
to convince that e; = e — ab is also an idempotent which satisfies the equality
erae; = (1 —e1)a®(1 —e;) =0 . Besides that (a0 —1)e; = 0 . It can be proved that
e1 is unambiguously certain idempotent which is a linear combination of elements
of group (a, by with the whole coefficients and satisfies above-mentioned equalities.

2. Image of endomorphism by formal matrices.

Lemma 4. Let K be an associative ring with 1,3 € K*, W be left K-module, a, b
be elements GL(W) such that a® = b* = 1, bab™' = a~'. Then there are isomorphism
modules g : W — W,, which induces isomorphism A, : GL(W) — GL(W,) so
that the elements Aga, Ayb can be represented by formal matrices

Aga:diag(<(1) :1),1),Agb:diag((&iﬁ _Ba>,7).

where a, B € EndL, v € EndP, aff = fa, &*+af+p*>=1,+4*=1, W, = L&LSP.
In particular, if W = R(a), then

(0 -1 - o 153
wem (= (L0, 2

Proof. Let R(a) = (a — 1)W and P(a) = ker(a — 1). Submodule R(a) and
P(a) is relatively invariant a and b, a* + a + 1 = 0 for submodules R(a) and a = 1
for submodules P(a). Let e = (1 — a)(1 — )37}, where 1 means a unit of GL(W).
Obviously, submodules R(a) and P(a) are relatively invariant e. Narrowing items
a, b, e for submodules R(a) satisfying lemma 4. Because eP(a) C (1 — a)P(a) = 0,
then e* = e = 0 on P(a). Therefore e? = e — idempotent on R(a). This means that
e? = e — idempotent rings EndW, which defines the schedule module W,

W = R(a)® P(a) = eR(a) ® (1 — e)R(a) @ P(a), where

R(a) = eR(a) ® (1 — e)R(a).
Let L = eR(a), P = P(a). Since a # 1, then R(a) # 0. Under the lemma 4
acR(a) C (1 — e)R(a) and a*(1 — e)R(a) C eR(a), (1 —e)R(a) C aeR(a). So,
(1 — e)R(a) = aeR(a) = aL. Thus it is proved that R(a) = L ® aL, L # 0,
W=L®aL®P. Let Wy=L® LS P and g: W — W, be an isomorphism of
modules, which is defined by the rules g(I; + aly + p) = I3 + ls + p, where [; € L,
1<i<2 peP,and A, : GL(W) — GL(W,) — induced g group isomorphism.
This means that the elements of the ring End(W,) can be represented by formal
3 X 3 matrices

Aga:diag(((l) Z; ) ,1),Agb:dz’ag(( 2; Zi ) ,fy).

Given equality (1+a+a?)R(a) = 0 get that a; = ay = —1. With equality ba = a™'b
it follows that b3 = by, by = —b; and with equality > = 1 get that biby = byby,
b2 + biby + b3 = 1. Let a = by and 3 = by. Then
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. 0 —1 o ! I6]
Aga—dmg<(1 —1)’1)’Agb_dm9((a+ﬂ —a>’7)
where o, 8 € EndL, v € EndP, a8 = fa, o> +af + 2 =1. 42 = 1.

If instead of the idempotent e we choose the idempotent e; = e —ab it is possible
to prove that a =0as S =1 .

Lemma 5. Let K be an associative ring with 1, 3 € K* , V be a left K-module,
a,be GL(V),a®>=0>=1,ab="ba. Then a and b can be represented by the formal
matrices a = diag (z, B, z,y, E) , b = diag (E, 2, z,y*, FE) , where 2> +x+1 =0 ,
V+y+1=0,22+2+1=0,22+2+1=0.

Proof. Submodules R(a) , R(b) , P(a) , P(b) are invariant relatively to
the elements a and b and there are decompositions V' = R(a) ® P(a) , R(a) =

R(@)RO) ® R@@NP©®), Pla) = P(a)NR(}) & P(a)(1P(b) Because of

(ab)® =1, the decompositions is also occured

a)( VR (b) =R(a)[ \R(®)( )R (ab) ® R (a)( R ()[ )P (ab)

This means that there is a decomposition of the module V in to the direct sum of
modules (some of which may be zero)

=R(a)NP(b)® P(a) R (b) & R(a) R (b) R (ab) &
R ()R )P (ab) ® P (a) (NP (D)

Thus it is proved that the elements a and b have a image which is shown in Lemma
5. Because of (r —1)(z+2) = -3 = (2> —1)(z+1) , then x — 1, 22 — 1 and
similarly y — 1 , 9> — 1, 2—1, 22 -1, 2, — 1, 22 — 1 are circulating on the
respective non-zero submodules. It is followed from Lemma 5 that if such an element
t € EndV commutes with the product ab = diag (z, 21,2, E, E) then t has a form
of t = diag (t,t3) , where t; commutes with diag (2, 21, 2?) . In particular if ¢ €

GL(V),R(a)P () =R(b)P(a)=0,thenV = R(a)mR(b)@P(a)ﬂP(b)
ab = diag (2?, E, E) , ab® = diag (E,y* E) , t; commute with 22 and as it followed
that with z = —2% + 1, [a,t] = diag (E,*) , [b,t] = diag (E,*) . In this case the
elements in the form of diag (T,0,0) commute with the elements ab® , [a,t] , [b,1]
for any T' € End (R (a) (YR () R (ab)) .

Lemma 6. Let K be an associative ring with 1, 3 € K* | V be a left K- module,
a,b,e,d,t € GL(V) ,a>=0=1,ab="0ba,b+# a®>, cac™t = a? cbc™' = b2
2=1,dad ' =b,d*>=1,tab=abt . Let to anym € EndV , m? = O in condition
of m commutes with ab® , [a,t] , [b,t] it is followed that m commutes with a. Then
R(a)\P(b) #0

Proof. Let R(a)(\P(b) =0. Then R(b)(P(a) =d(R(a)P (b)) =0,V =

a)mR ﬂR ab) ® R (a ﬂR )ﬂP(ab)@P( nP ), a = diag (z,y,
E), b = diag (z,y*, E), where 22 + x +1 = 0, y> + y + 1 = 0. Because of b #
a?, then R(a)(R (D) R (ab) # 0. According to Lemma 4 we can assume that

T = 0 —1 . Let m = diag 8 (1) ) ,0,0). As noted above, m commutes

1 -1
with ab?® , [a,t] , [b,t]. According to the condition m commutes with a. However,
according to the form m does not commutes with a. From this contradiction it is

followed that R (a) (P (b) # 0
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Theorem 1. Let K be an associative ring with 1, 2 € K* , W be left K-module,
a,b,c,d be the elements of group GL (W) such that a®* = b* = 1, ab = ba, ca =
ac, chc™t = ab, db = bd, dad™' = ab, a # 1. Then there is the isomorphism of
modules g : W — W,, which induces isomorphism A, : GL (W) — GL(W,) so
that the elements Aga, Agb, Agc, Ayd can be represented by formal matrices Ayja =

diag (—1,—1,1,1), Ajb = diag (1,—1,—1,1), Ayjc = diag (( (1) 0 ) B, 7) A gd =

diag (ﬁl, ( 0 Og ) ,'yl) , where o, B, 01, 81 € EndL, y,v1 € EndP, Wy = L®L®
L®P.

Proof. By condition R (a) # 0, bR( ) R(a),b ( )=P(a). Therefore there
is a decomposition W = R (a) @ R (a) mR ® R (a) ﬂ
R()® P(a)P(b) . Let L = ( )ﬂP( ), P=Pa)NP( ) : Then cL =
R(a)(\ P (ab) = R(a)( R (b) and dcL = R(ab)ﬂR( )= P (a) R (D). Because of
R(a) = L&cL # 0, than L # 0 and W = L@cL®dcL® P, where W, = LGLE LS P.
Let us consider the isomorphism of the modules g : W — W, Which is defined by the
rule g (I; + cly + dclz + p) =l + 1o+ 13+ p, where [; € L, 1 <i < 3, p € P and group
homomorphism A, : GL (W) — GL (W,) which is induced by the isomorphism of
the modules g : W — W, where Ayjo = gog~* for all. We represent the elements of
the ring by formal matrices. In particular, we find that Aja = diag (—1,-1,1,1),
Ayb = diag (1,—1,—1,1), where 1 is a unit of EndL or EndP a ring respectively.
Beside this,

’L = cR(a) N P(b) = R(a) N P(ab) = L,
cdcL = cdR(a) N R(b) = P(a) N R(ab) = cL,
cP = P(a) N P(ab) = P.

Agc:diag(<(1) 0 ),B, ),

where «, 3 € EndL, v € EndP. Similarly proved that dcL = cL, d*L = L, dP = P

and
. 0
Ayd = diag (51, ( 061 ) 771),
where aq, 81 € EndL, v; € EndP.

In particular, if ¢ = a, then « = =1, 32 =1, 4> = 1. If > = 1, then a = 1,
% =1, v* = 1. Thus, Theorem 1 is proved.

Remark 1. If G be a group such that E(n,R) C G C GL(n,R), where R is
an associative ring with 1,n > 3 and A : G — GL(W) is non-trivial arbitrary
homomorphism, who in the group GL(W) as elements a,b,c,d, appearing in the
Theorem 1, provided At;;(2) # 1 you can choose

a = Adiag (—1,—1,1,...,1), b = Adiag (1,—1,—1,1,...,1),

c:Adiag<((1) _01),1,...,1),d:/\diag(1,((1) _01),1,...,1).

This ¢* = a, d* = b. If At;;(2) # 1 for some, and hence for all 1 <i # j < n, then
as elements a, b, c, d elements can be selected a = At12(1), b = Aty3(1), ¢ = Atza(—1),
d == At23(—1>

In fact, according to the formula [t;;, ¢, (1),t; (r)] = ti (—r) , where 1 <

Therefore

Hayk. Bicuuk Yxkropoz yu-ry, 2017, sun. Nel (30)



FIXED AND RESIDUAL MODULES 93

1,7,k < n are pairly different numbers, there is an inequality a # 1 .

Theorem 2. Let K be an associative ring with 1, 3 € K* | W be a left K-
module, a,b,c,d are the elements of group GL (W) such that a®> = b* = 1, ab = ba,
cact = a7t ebe =07 2 =1,dad™t = b, d* = 1, dc = cd, R(a)(P(b) #
0. Then there is the isomorphism of modules g : W — W, which induces the
isomorphism of group A, : GL(W) — GL(W,) so that the elements Aja, Ayb,

! ,1,1,a),

0
1 -1

. 0 -1 . 01 0 1
Agb:dlag(1,1,<1 _1),ﬁ>,Agc:dzag((1 O)’(l O),v),Agd:

diag(( 0 E),6> where o, 8,7,0 € EndP, o?> = 32 =1,v?> =62 =1, aff = Ba,

Age, Agd can be represented by formal matrices Aga = diag

E 0
ya = a?y, da = B0, E = diag (1,1), 1 is a unit EndL or EndP respectively.

Proof. Let e = (1—a)(1—¢)37%, f = (1—0)(1—¢)37! as in the Lemma
4. Then e* = e, eae = 0, f2 = f, fof = 0, ded™' = f, dfd™! = e W =
R(a)( )P (1) @ R(®)(\P(a) @ R(a)[ \R(b) @ P(a)( P (1), R(a) = eR(a) ®
(1—e)R(a), R(b) = fR(b)® (1 —e)R(b) As in the Lemma 4 we have ceR (a) =
(l1—e)R(a),cfR(b) = (1— f)R(b). Under the condition dR (a) (P (b) = R (b))
P(a).Let L=¢eR(a)(VP(b),P=R(a)(NR(b)BP (a)( )P (b). Then R (a)( P (b)
=L®cL,L#0,dL=fR(b)(P(a), R(b)(P (a) =dL & dcL. Thus it is proved
that W =L@ cLOdLDdcLOP. Let Wy =LOLOLOLDP, g: W — W, be an
isomorphism of modules, which is defined by the rule g (I; + ¢ly + dl3 + dely + p) =
lh+lo+1l3+1ls+p where ; € L, 1 < i <4, pe Pand Ay : GL(W) —
GL (W,) is an induced group homomorphism. Represent the elements of the ring

End (W,) by formal 5 x 5 matrices Aja = diag (1) :i ,1,1,&), Ab =

. 0 —1 . 0 1 0 1 .
dzag(l,l,(l _1),ﬂ>,AQC—dmg<(1 O)’(l 0),7>,Agd—dzag

-1
(< 81 AO > ,5) where a, 3,7,6 € EndP and A € (EndL), are formal 2 x 2

matrix that commute with formal 2 x 2 matrices ( (1) :1 ) and ( (1] (1) ) , where
1 € EndL. Therefore, up to conjugation, in the formal matrix diag (A, 1,1) we can

assume that A = 1. Thus, Theorem 2 is proved.

Remark 2. If G is a group such that E'(n,R) C G C GL(n,R) , where R is
an associative ring with 1, n >4 , and A : G — GL (W) is an arbitrary non-trivial
homomorphism with condition (*) on E (n,R) , then the elements a,b,c,d, which

appear in the theorem 2 in group you can choose a = Adiag (( (1) :1 I 1) ,

. 0 -1 . 0 1 01
b—AdZag(l,l,(l _1>,1,...,1>,C—Adzag<(1 0),(1 0),1,...,1),

d = Adiag (( g g ) 1, 1) , where E = diag (1,1) is a single 2 X 2 matriz.

In fact, according to the formula [t;;t;; (—1),t;x (1), (r)] = tix (—r), where
1 <i,j,k < n are pairly different numbers, there is an inequality a # b%. As A is a
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homomorphism with the condition (*), so all the other conditions of Lemma 6 are

fulfilled. Therefore, if you put t = Adiag (( g g ) ,E) in Lemma 6, then ¢ com-
mutes with ab, where a = Adiag (A, E, F), b= Adiag (E,A,E) , A= ( (i :1 ) €

GL (2, R). Let m be an arbitrary element of the ring EndW , m? = 0, which com-
mutes with ab? | [a,t] , [b,t] . It can be considered that m # 0. Under condition (*)
there is an element h € GL (n,R) such that Ah = 1 + sym and h®* commutes

with diag (A, A% E), diag(<§ AEE),E), diag(( AfE g),E) In

this case, as the test shows, h®2 commutes with diag (A, E, E) . That is why the
element Ah*? = 1 + s;som and, consequently, the element mcommute with a. Ac-
cording to the Lemma 6 R (a) () P (b) # 0 . Therefore the above mentioned elements
a, b, c, d satisfy the conditions of the theorem 2.
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