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Isomorphisms of matrix groups

over commutative rings

V. M. Petechuk and J. V. Petechuk

Communicated by M. B. Szendrei

Abstract. We give a description of the isomorphism classes of matrix groups

over commutative rings with 1 and that have dimension more than 3 and

containing the group of elementary transvections. We characterize those ho-

momorphisms of matrix groups, which satisfy the so-called (∗) condition. Such

homomorphisms can be constructed with the help of the standard homomor-

phism. We apply the characterization obtained to the description of the above

class of matrix groups.

1. Introduction

The study of the group of automorphisms of classical matrix groups was started by

the paper [28], in which the authors described the group of automorphisms of the

group PSL(n,R) over an arbitrary field R for n ≥ 3. Extending the ideas of [16],

later J. Dieudonné [7] and C. E. Rickart [27] introduced the method of involutions,

using which they described the group of automorphisms of the group GL(n,R) over

a skew-field R for n ≥ 3.

The first step in building the theory of automorphisms over rings, particulary

for the group GL(n,Z) over the ring of integers Z with n ≥ 3, was done in [13]. In

[14] the authors generalized Hua–Reiner’s results over non-commutative principal

domains.

The methods of the papers above were based in general on the study of

properties of involutions in these groups considered. O’Meara (1966–1970) came

up with a completely new so-called method of residual spaces, which does not use

Received January 26, 2016.

AMS Subject Classification: 20H25, 20K30, 20G20, 15A30.

Key words and phrases: linear group over ring, homomorphism of matrix group, elementary

subgroup over ring.
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involutions. Using this method he managed to describe the group of automorphisms

of the group GL(n,R) for n ≥ 3.

Independently of O’Meara, based on the study of involutions, the group of

automorphisms of the group E(n,R) over an integer domain R of characteristic

different from 2 for n ≥ 3 was described by Shi-Jian Yan (see [29]). In [26] was

defined the group of automorphisms of the group GL(n,R) over a commutative

local ring R where 2 is an invertible in R for n ≥ 3. They used Kaplansky’s theorem

which claims that the projective modules over a local ring are free. Note that the

invertibility of the element 2 gives the possibility to draw upon the study of the

automorphisms of the group GL(n,R) for n ≥ 3, the technique which leans on the

study of involutions.

W. Waterhouse in [32] proved that all automorphisms of the group GL(n,R)

with n ≥ 3 over an arbitrary commutative ring R in which 2 is invertible are

standard. If 2 is not an invertible element of a commutative local ring R, then

the automorphisms of the groups E(n,R) and GL(n,R) were described in [18–20].

V. Petechuk was first to discover that in some cases a nonstandard automorphism ex-

ists when n = 3, through which he obtained a full description of the automorphisms

of the group E(n,R).

In [19] these results were carried over to arbitrary commutative rings. Using

different methods in [10,21,22,34] were given a full description of the automorphisms

of the group E(n,R) over arbitrary associative rings with 1 in which 2 is an invertible

element and n ≥ 3.

I. Golubchik in [9] described the isomorphisms of matrix groups GL(n,R) for

n ≥ 3 and GL(m,K) for m ≥ 4 over arbitrary associative rings R and K with 1. The

homomorphisms with condition (∗) which is mentioned in this paper were described

in [24,25]. The homomorphisms with condition (∗) are in some sense connected with

the theory of representation of matrix groups over rings (for example, see [3–5]).

The description of isomorphisms of classical groups (see the citations in the

surveys [11,17,31,33]), Chevalley groups and unitriangular groups over commutative

rings (see [1,6,15]), as well as the stability of groups over arbitrary rings (see [2]) are

very close to the study of homomorphisms of matrix groups over associative rings.

Note that the description of stability of linear groups over associative rings (see the

citations in the survey [31,33]) is closely connected with all mentioned above.

The contemporary state of the theory of automorphisms of matrix groups as

well as its historical overview is given in the surveys [11, 31, 33] and in the books

[12,17].
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2. Preliminaries

In the sequel let R and K be associative rings with 1, let S ⊂ K \ {0} be a

multiplicatively closed subset such that 1 ∈ S and let KS be a localization of K by

S. Let ΛS : K → KS be a canonical homomorphism, defined by

ΛS(k) =
ks

s
(k ∈ K, s ∈ S).

Let W be a left nonzero K-module and WS the localization of the module W by S

and let Λ: GL(n,R) → GL(W ) be a group homomorphism. Let ΛS : End(W ) →

End(WS) be the canonical homomorphism defined by

ΛS

(
σ
)[w

s

]
=

σ(w)

s
(σ ∈ End(W ), s ∈ S,w ∈ W ).

Clearly ΛS is a ring homomorphism.

Images of the elements of the rings K and End(W ) as well as the elements

of the module W obtained after the localization will be denoted by a bar. Put

Λ = ΛSΛ. Clearly ΛS(S) ⊆ K∗

S , where K∗

S is the group of units of the ring KS .

Sometime the identity matrix of degree n is denoted by either En or 1. Let eij
be a standard matrix unit of the matrix ring M(n,R) over the ring R. The elements

tij(r) = 1 + reij (i 6= j) and di(r) = 1 + (r − 1)eii (r ∈ R)

are called the elementary transvection and the elementary diagonal matrices of the

group GL(n,R), respectively.

The subgroup of GL(n,R) generated by the elementary transvections over a

ring R is denoted by E(n,R) and it is called the group of elementary transvections

over the ring R.

Definition 1. Let G be a group such that

E(n,R) ⊆ G ⊆ GL(n,R) (n ≥ 2)

and let Λ: G → GL(W ) be a homomorphism defined as before.

We say that Λ satisfies condition (∗), if for any nonzero nilpotent element

m ∈ End(W ) with m2 = 0 (we always assume that such an m exists), the following

two items hold:

• there exist A ∈ G and s1 ∈ N with the property that s1 · 1 ∈ K∗ such that

Λ(A) = 1 + s1m;
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• for each B ∈ G there exists s2 ∈ N with the property that s2 · 1 ∈ K∗ such

that from the equation ΛB · ΛA = ΛA · ΛB follows that BAs2 = As2B.

In particular, condition (∗) is satisfied by any isomorphism of the group G to

the group GL(W ). For this it is enough to assume that s1 = s2 = 1 and use the

fact that 1 +m ∈ GL(W ).

Definition 2. Let G be a group such that

E(n,R) ⊆ G ⊆ GL(n,R) (n ≥ 2)

and let Λ: G → GL(W ) be a homomorphism defined as before.

We say that Λ satisfies the extended condition (∗), if for any nonzero nilpotent

element m ∈ End(W ) with m2 = 0 (we always assume that such an m exists), the

following two items hold:

• there exist A ∈ G and s1 ∈ N with the propery that s1 · 1 ∈ K∗ such that

Λ(A) = 1 + s1m;

• for each B ∈ G there exists s2 ∈ N with the property that s2 · 1 ∈ K∗ such

that from the equation ΛB · ΛA = ΛAk · ΛB follows that B ·As2 = Aks2 ·B,

where k is from a given subset of integers.

In particular, a homomorphism satisfying the extended condition (∗) also

satisfies condition (∗), if the set of integers k in Definition 2 contains 1. For this it

is enough to put k = 1.

We start with the following.

Lemma 1. Let R be a ring and let G be a group. If Λ: G → GL(W ) satisfies the

extended condition (∗), then the homomorphism Λ: G → GL(WS) also satisfies the

extended condition (∗).

Proof. Let m be a nontrivial nilpotent element of End(WS) such that m2 = 0. It

follows that s0m ∈ End(W ) for some s0 ∈ S and there exists s′0 ∈ S such that

s′0(s0m)2 = 0. Hence (s0s
′

0m)2 = 0. By the conditions of our definition there exists

A ∈ G such that ΛA = 1 + s1m1, where m1 = s0s
′

0m, s1 ∈ S, m1 = m and

ΛA = 1 + s1m1.

If g ∈ G and Λg · ΛA = ΛAk · Λg for some k ∈ Z, then there exists s′ ∈ S,

such that (Λg · ΛA− ΛAk · Λg)s′ = 0. Consequently
(
Λgm1 − km1Λg

)
s1s

′ = 0

and, as a consequence Λg · ΛAs1s
′

= ΛAks1s
′

· Λg. By the extended condition (∗)

there exists s2 ∈ S such that gAs2 = Aks2g.

This proves that Λ satisfies the extended condition (∗).
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It is easy to see that a product of a homomorphism which satisfies the extended

condition (∗) and an isomorphism is also a homomorphism fulfilling the extended

condition (∗).

We shall use the following result.

Theorem 1. ([24,25]) Let R,K be rings with 1 and let G be a group such that

E(n,R) ⊆ G ⊆ GL(n,R) (n ≥ 4).

Let W be a left K-module and let Λ: G → GL(W ) be a homomorphism satisfying

the condition (∗). Then there exist submodules L 6= 0 and P of the module W and

an isomorphism g : W → L⊕ · · · ⊕ L︸ ︷︷ ︸
n

⊕P such that

Λ(x) = g−1
[
δ(x)e+ ν(x)−1(1− e) + e1

]
g.

Here x ∈ E(n,R), δ : M(n,R) → End(L⊕ · · · ⊕ L︸ ︷︷ ︸
n

⊕P ) is a ring homomorphism

and ν : M(n,R) → End(L⊕ · · · ⊕ L︸ ︷︷ ︸
n

⊕P ) is a ring antihomomorphism which are

induced by the ring homomorphism δ : R → End(L) and the ring antihomomorphism

ν : R → End(L), respectively. The element e is a central idempotent of End(L), 1 is

a unity element of End(L⊕ · · · ⊕ L︸ ︷︷ ︸
n

) and e1 is the unity element of the ring End(P ).

In particular, Λtij(1) = g−1[tij(1)e+tji(−1)(1−e)+e1]g, where 1 ≤ i 6= j ≤ n.

Remark 1. If additionally we assume 2 ∈ R∗, then the theorem is also true for

n ≥ 3. If n = 3 and 2 6∈ R∗ then there exists a nonstandard homomorphism (see

[20]).

Let R,K be commutative rings with 1. Let G,G1 be isomorphic groups with

group isomorphism Λ, such that

E(n,R) ⊆ G ⊆ GL(n,R), E(m,K) ⊆ G1 ⊆ GL(m,K) (n,m ≥ 4).

Since Λ(G) = G1 ⊆ GL(m,K) ∼= GL(W ), so Λ satisfies condition (∗) by our lemma

in Section 2.

Moreover Λ defines the homomorphism

ΛIΛ: E(n,R) → GL(n,K) → GL(n,KI), (1)

where I is a maximal ideal of the ring K and KI is the localization of K by S = K\I.



Author’s personal copy

Acta Scientiarum Mathematicarum 83:1–2 (2017) c© Bolyai Institute, University of Szeged

118 V. M. Petechuk and J. V. Petechuk

The homomorphism ΛIΛ (see (1)) defines the homomorphism

Λ0Λ: E(n,R) → GL(n,K) → GL(n,K0),

where K0 =
∏

KI is the direct product of the local rings KI , where I runs over

the maximal ideals of the ring K and also includes the ring K itself. With the help

of the description of the homomorphism Λ: G → G1 it is easy to describe both

ΛIΛ and Λ0Λ. Furthermore, using the property of the homomorphism Λ0Λ, we can

obtain a description of the homomorphism Λ.

Note that the description of the isomorphism Λ: G → G1 can be obtained

in a different way using ideas of the paper [19]. First of all consider the following

commutative diagram:

E(n,R) GL(m,K)

E(n,RI) GL(m,KJ)

E(n,R/I) GL(m,K/J),

Λ

Λ

where E(n,R) ⊆ G and E(m,K) ⊆ Λ(G). This is possible due to the fact that the

kernel of the homomorphism E(n,R) → E(n,R/I) for a maximal ideal I of the

ring R is normalized by the group GL(n,R) and ΛE(n,R) is normalized by the

group Λ(G) ⊇ E(m,K). Since the structure of the groups which are normalized by

E(m,K) over the commutative rings K is known (see [8,12,23,30]), the isomorphism

Λ induces the isomorphism of the groups Λ: E(n,R/I) → E(m,K/J), where J is a

maximal ideal of the ring K. Using the fact that the isomorphism between special

linear groups over the fields R/I and K/J is also described (see [12]), we have that

the fields R/I and K/J are isomorphic, m = n and the homomorphism Λ is a

product of standard homomorphisms. The description of the homomorphisms ΛIΛ

and Λ0Λ follows from which follows the description of the isomorphism Λ.

As a consequence, it is easy to see that in the case for the description of the

isomorphism Λ between G and G1 we need to use a description of the normal

structure of matrix groups over the commutative rings and also a description of

the isomorphism of matrix groups over the fields, which is not an easy challenge.

The proposed approach of this paper does not use these classical results. Rather

our results are obtained as a special case of a description of the homomorphisms

with condition (∗).
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3. Main result

The main result of the present paper is the following.

Theorem 2. Let R,K be commutative rings with 1. Let G,G1 be isomorphic groups

with group isomorphism Λ, such that

E(n,R) ⊆ G ⊆ GL(n,R), E(m,K) ⊆ G1 ⊆ GL(m,K) (n,m ≥ 4).

Then n = m and there exists a ring isomorphism δ : R → K such that

Λtij(r) = g−1
[
tij(δr)e+ tji(−δr)(1− e)

]
g,

for some g ∈ GL(m,K0). Here r ∈ R, e is an idempotent of the ring R, 1 ≤ i 6=

j ≤ n and K0 is a commutative extension of the ring K.

Proof. Clearly GL(m,K) ∼= GL(W ) for some left free K-module W of rank m over

the ring K. By the conditions of Theorem 1 there exist submodules L 6= 0 and P

of the module W and there exists an isomorphism of the K-modules

g : W → L⊕ · · · ⊕ L︸ ︷︷ ︸
n

⊕P

such that

Λtij(r) = g−1
[
tij(δr)e+ tji(−νr)(1− e) + e1

]
g, (2)

for all 1 ≤ i 6= j ≤ n and r ∈ R. Here δ : R → End(L) is a ring homomorphism,

ν : R → End(L) is a ring antihomomorphism and e is a central idempotent of the

ring End(L).

Let I be a maximal ideal of the ring K and let S = K \ I. Let KI be the

localization of the ring K by the multiplicative set S and let WI be the localization

of the module W by S, respectively. From the isomorphism of the left K-modules

W ∼= L⊕ · · · ⊕ L︸ ︷︷ ︸
n

⊕P

follows the isomorphism of the following left KI -modules

WI
∼= LI ⊕ · · · ⊕ LI︸ ︷︷ ︸

n

⊕PI .

The isomorphism Λ: G → G1 induces a homomorphism

ΛIΛ: G → (G1)I ⊆ GL(WI)
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which is a homomorphism satisfying condition (∗) by the lemma in Section 2 with

the condition that LI 6= 0. Since KI is a commutative local ring and WI is a free

KI -module of rank m, then the projective submodules LI and PI are also free and

they have finite rank over the local ring KI . Using the fact that L 6= 0 and 1 ∈ K,

we obtain that AnnK L 6= K and there exists a maximal ideal (which again we call

I) of the ring K which contains AnnK L. Hence

dim(WI) = m ≥ n dim(LI) ≥ n.

Using the same argument for Λ−1, we obtain that n ≥ m. Consequently n = m,

dimLI = 1, dimPI = 0 so PI = 0. It is easy to see that in the case when P 6= 0,

there exists a maximal ideal J of the ring K such that AnnK P ⊂ J and PJ 6= 0.

Consequently P = 0 and the homomorphism ΛIΛ (see (2)) has the form

ΛIΛtij(r) = g −1

[
tij(δr)e+ tji(−νr)(1− e)

]
g,

for all 1 ≤ i 6= j ≤ n and r ∈ R. Since KI is a local ring, it has only trivial

idempotents (0 and 1) and e ∈ {0, 1} in the ring KI .

Put gI = g ∈ GL(n,KI) and eI = e. (Remember that n = m.)

The ring K can be written as the cartesian product K0 =
∏

KI of all local

rings KI , where each KI is obtained by the localization of K by a different maximal

ideal. Clearly the group GL(n,K) can be embedded into the group GL(n,K0). Put

g0 =
∏

gI .

Now put K1 =
∏

KI , g1 =
∏

gI and e1 =
∏

eI , where in the product we

chose those maximal ideals I for which e = 1 in KI . Similarly put K2 =
∏

KI ,

g2 =
∏

gI and e2 =
∏

eI (here we require that e = 0).

Clearly K0 = K1 ×K2, GL(n,K0) = GL(n,K1)×GL(n,K2) and 1 = e1 + e2
is the unity element in K and K0, respectively. This yields that

Λtij(r) = g0
−1

[
tij(δr)e1 + tji(−νr)e2

]
g0 ∈ G1 ⊆ GL(n,K), (3)

where δ : R → K1 and ν : R → K2 are ring homomorphisms such that δ(1) = e1
and ν(1) = e2.

For a natural number k ∈ N we define k̂ =

{
k − 1, if k is even;

k + 1, if k is odd.

Put

C =
[
e1En + e2

∏
t
kk̂
(1)t

k̂k
(−1)t

kk̂
(1)

]
g0,
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where k is even and 1 ≤ k, k̂ ≤ n. Now it is easy to check (see (3)) that

Λt
kk̂
(1) = C−1t

kk̂
(1)C ∈ M(n,K);

Λtij(1) = C−1
[
tij(1)e1 + t

ĵî
(−1)i+je2

]
C ∈ M(n,K);

Λtij(1)− Λt
ĵî
(−1)i+j = C−1

[
eij + (−1)i+j+1e

ĵî

]
C ∈ M(n,K)

for all 1 ≤ i 6= ĵ ≤ n.

If n is odd, then we need to consider additionally the elements Λtin(1), Λtni(1)

and the following difference:

Λtin(1)− Λt
n̂i
(−1)î ∈ M(n,K).

Put C−1 = (cij) ∈ M(n,K0) and C = (Cij) ∈ M(n,K0). It is easy to check that

the elements of the rows of the matrix C and the elements of the columns of C−1

can be expressed as a linear combination over K in terms of each other, respectively.

Hence (c1i · · · cni)
T(Cj1 · · ·Cjn) is a matrix over the ring K (here T is the classical

transpose). This proves that ckiCjl ∈ K for all 1 ≤ k, i, j, l ≤ n. Since K0 is a

commutative ring, Ckicjl ∈ K for all 1 ≤ k, i, j, l ≤ n. Hence

tij(1)e1 + t
ĵî
(−1)i+je2 = CΛtij(1)C

−1 ∈ GL(n,K).

Moreover, e1, e2 are idempotents of the ring K and C−1GL(n,K)C = GL(n,K).

Put δ0 = δ + ν. Then e1νr = e2δr = 0 and

Λtij(r) = g0
−1

[
tij(δ0r)e1 + tji(−δ0r)e2

]
g0,

for all 1 ≤ i 6= j ≤ n and δ0 : R → K is the isomorphism.
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19 (2009), 87–111; also available at arXiv: 1003.2301.

[24] Y. V. Petechuk and V. M. Petechuk, Homomorphisms of matrix groups over

associative rings. Part i, Nauk. Vı̄sn. Uzhgorod. Univ. Ser. Mat. Īnform., 26 (2014),
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