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Abstract. Samples of Ag;,(P;_xGe,)Se (x =0, 0.1, 0.25, 0.33, 0.5, 0.75, 1.0) solid solutions
were obtained in the form of microcrystalline powders by grinding in an agate mortar.
The diffuse reflectance spectra of the obtained Ag;.(P; <Ge,)S¢ samples were studied in
the spectral range 200 to 1400 nm at 293 K. The spectral dependences were analyzed using
multilevel approximation by applying the Kubelka—Munk function and the Tauc method.
It has been found that for Ag;,«(P;xGes)S¢ solid solutions, a red shift of the reflection
edge beginning is observed with increasing the Ge content. The pseudo-gap values of
Ag;.«(P1_xGe,)S¢ solid solutions was estimated by the Tauc method. It was found that
the heterovalent cationic substitution P*> — Ge™ within the anionic sublattice leads to
a monotonic nonlinear decrease in the pseudo-gap values.
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1. Introduction

Complex chalcogenides are a class of semiconductor
materials that belong to different structural types
(diamond-like, perovskites, argyrodites, etc.) and are
characterized by low band gap values and are suitable for
use as light-harvesting materials in a wide spectral range
[1, 2]. Recently, investigation of the optical properties of
ternary and quaternary silver chalcogenides with an
argyrodite structure has been actively developed in the
area of photovoltaic technologies for solar cell and
photocatalytic applications [3, 4].

In this aspect, the most studied representative of
argyrodites is canfieldite AggSnSe, which is a structural
analogue [5] of the initial argyrodite AggGeSe. The
reported bandgap FE, for AggSnSs nanocrystals is
1.24...1.41 eV [3, 4]. The use of AggSnSe-based hetero-
structures as photoanodes [6, 7] for photoelectrochemical
splitting of water [8] and photocatalysts [9] has been
reported. The quaternary representatives of the
argyrodites, Age¢PSsI and Ag;Si(Ge)SsI compounds, are
characterized by higher optical pseudo-gap values within

the range of 1.554 to 2.030 eV [10, 11]. The structural
motif of argyrodites is a tetrahedral close packing formed
on the basis of a multi-charged cation (Si**, Ge**, Sn**,
P**), in which the voids are occupied by single-charged
cations [5]. Multi-charged cations are characterized by
full occupation of the position, and single-charged
cations by partial occupation. The result is formation of a
rigid anionic framework formed on the basis of anions
and multivalent cations and a disordered cationic
sublattice. This structural disorder significantly affects
the electrophysical parameters of argyrodites [10—13].
For the present study, the ternary compounds
AggGeS¢ and Ag;PS¢ and solid solutions based on them
were chosen. Both ternary sulfides AggGeS¢ and Ag;PS¢
melt congruently at 958 °C [14, 15] and 801 °C [15, 16],
respectively. The structural phase transition in the
AgsGeSg (271 °C) and Ag;PS¢ (227 °C) phases is
accompanied by the transition from the cubic crystal
system of the space group (SG) F-43m [14, 16] to
the primitive orthorhombic and cubic cells, respectively.
The low-temperature modification of AggGeSq
crystallizes in SG Pna2, with lattice parameters:
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a=15.1469 A, b = 74694 A, ¢ = 105842 A, Z=4
[15,17], and Ag,PS¢ in SG P2;3 with parameters
a=103917A, Z=4 [15,18]. The Ag;PSsAgsGeSq
system is characterized by formation of a continuous
series of solid solutions based on high-temperature
modifications. Upon cooling, the solubility gap is
observed with formation of two regions of boundary
solid solutions [19]. According to the LDA+U
approximation calculations [20], AggGeSg is a direct-gap
semiconductor with the band gap E,=1.46 eV.

Due to the considerable interest in searching
for new materials for energy-saving technologies,
it was decided to estimate the pseudo-gap value of
Agr.x(P1xGey)Se solid solutions by diffuse reflectance
spectroscopy. Also, the influence of heterovalent
substitution P**«> Ge** on the optical properties of
Agr.x(P1_xGey)Sg solid solutions was determined.

2. Experimental

2.1. Sample preparation

Polycrystalline ternary halogen-free compounds Ag,PS¢
AggGeS¢ were prepared from high purity elemental
components: Ag (99.995%), P (99.9999%), Ge
(99.999%), and S (99.999%) in evacuated (0.13 Pa) silica
ampoules. The synthesis procedure of initial compounds
was performed in a two-stage by using the single-
temperature method. The first stage consisted of heating
to 450 °C at a rate of 100 °C/h (exposure for 30 h), and
the second stage — heating to 1000 °C at a rate of 50 °C/h
(exposure for 60h), followed by cooling to room
temperature (rate 50 °C/h) [15]. Thus, Ag;PS¢ and
AgsGeSs were obtained in the form of polycrystalline
alloys, which were further used to obtain solid solutions
based on them.

The solid solutions of Ag;.(P_xGey)Sg (x =0, 0.1,
0.25, 0.33, 0.5, 0.75, 1.0) composition were synthesized
using the one-stage one-temperature method from
previously synthesized ternary compounds. The synthesis
regime consisted of heating stoichiometric amounts of
ternary sulfides at the rate close to 50 °C/h up to 1000 °C
and holding the melt at this temperature for 24 hours.
Cooling to the annealing temperature (530 °C) was
carried out at the rate approximately 50 °C/h. The
annealing of polycrystalline alloys was performed for
72 h, and cooling to the room temperature was carried
out in the furnace off mode.

The obtained polycrystalline samples of individual
Ag;PS¢ and AggGeSg compounds and Agr.(P, <Gey)Se
solid solutions were grinded in an agate mortar to fine
powders with a crystallite size within the range
~10...20 pm. The dispersion of the obtained powders
was controlled by sieving through sieves of appropriate
porosity.

2.2. Methods

The diffuse reflectance spectroscopy was used to study
the optical properties of powders. The diffuse reflectance

spectroscopy method is suitable for the optical
characterization of powdered material [21]. The diffuse
reflectance spectroscopy method takes into account the
absorption and scattering capability of the polycrystalline
sample. The relationship between the diffuse scattering
and absorption of a sample is described by the
mathematical Kubelka—Munk transformation [22, 23]:

f(Rd):(l_Rzi)2/2Rd =K/S.

The Kubelka—-Munk function connects the
reflectance R, with the absorption coefficient K and the
scattering coefficient S [22, 23].

The  diffuse reflectance  spectra of the
Agr.x(P1_xGey)S¢ micropowders were obtained using a
Shimadzu UV-2600 double-beam spectrophotometer
with the measuring range of 200 to 1400 nm. The
Shimadzu UV-2600 is equipped with the ISR-2600Plus
integrating sphere, which provides a wider analytical
system for its application (measuring range: 220 to
1400 nm). The ISR-2600Plus integrating sphere allows
obtaining diffuse reflectance spectra for semiconductor
materials by using standard silica window cuvettes
for powdered samples (P/N 206-89065-41). The
measurements were performed using the Shimadzu
UV-2600 double-beam spectrophotometer with an ISR-
2600Plus integrating sphere, which allows for clear
observation of the absorption edges where the reflection
wavelength decreases. The obtained spectra, thanks to
automatic fixation with the UVProbe software, after
multilevel processing enabled to determine the value of
optical pseudo-bandwidth for the investigated samples
[13,24]. Estimation of the pseudo-gap inherent to
Agy.«(P1_xGe,)Sg solid solution samples (x = 0, 0.1, 0.25,
0.33, 0.5, 0.75, 1.0) can be carried out using multilevel
approximation with the graphical Tauc method applied to
the transformed diffuse reflectance spectra with account
of the Kubelka—Munk function [13, 24].

Optical characterization of  Ag;.(P_<Gey)Se
micropowders were performed using the Shimadzu
UV-2600 double-beam spectrophotometer equipped with
an ISR-2600Plus integrating sphere, which allows for
clear observation of the absorption edges where the
reflection wavelength decreases. The diffuse reflectance
spectra were obtained within the spectral range
200...1400 nm at the temperature 293 °C. Measurements
were performed in standard cuvettes for powdered
samples with silica windows (P/N 206-89065-41). All the
spectra were recorded using the UVProbe software
(Shimadzu).

The obtained spectra enabled to determine the value
of the optical pseudo-gap for the studied samples.
Estimation of the pseudo-gap values for Ag;,x(P; xGe,)Se
(x =0, 0.1, 0.25, 0.33, 0.5, 0.75, 1.0) solid solution was
carried out by multilevel approximation using the Tauc
method applied to the transformed diffuse reflectance
spectra with account of the Kubelka—Munk function
[13, 24].
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3. Results and discussion
3.1. Optical properties

Diffuse reflectance R; spectra of the Ag; (P, Gey)Se
solid solutions were obtained on micropowders
(crystallite size ~10...20 um) relative to the BaSO,
standard (provided by Shimadzu). Shown in Fig. 1 are
the UV-VIS reflectance spectra as a function of
wavelength (A, nm) for the studied solid solutions.

The spectral dependence of the diffuse reflectance
of Ag;(PxGe,S¢ solid solutions (Fig. 1) was
considered in three spectral ranges. In the region of low
absorption (over 950 nm) at low photon energies hv,
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Fig. 1. Diffuse reflectance spectra of Ag;,(P1_.Ge,)S¢
(x=0,0.1,0.25, 0.33, 0.5, 0.75, 1.0) solid solutions. Curves are
arranged in ascending order of x value. (Color online.)
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reflection with scattering may predominate, while in the
spectral range 640...950 nm, corresponding to the region
of sharp decrease in R,, the appearance of the beginning
of the optical absorption edge is observed. In the spectral
range below 640 nm, a region of strong optical
absorption is detected.

The analysis of the compositional spectral
dependence (Fig. 1) revealed that for Ag; (P, Ge,)Ss
solid solutions, a red shift of the short-wave diffuse
reflection edge was observed with increasing the Ge
content, which is a characteristic property of solid
solutions [24].

To estimate the values of the pseudo-gap E,
according to the obtained spectral dependence, it is
necessary to apply multilevel processing of spectra
with the Kubelka—Munk function, followed by the use of
the Tauc method and application of the least squares
function (as a method for determining E,). The Kubelka—
Munk function is used to convert the diffuse reflection
spectrum into the absorption spectrum, and the Tauc
method takes into account the band structure of material
[21, 22, 24-26]:

1—Rd(hv)]2jn _alw-E).

e,y < LR

where R, is the diffuse reflectance at each wavelength,
h is the Planck constant, v is the photon frequency,

[1 R, (hV)]z
2R, (hv)

band gap, and A is the proportionality constant.
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Fig. 2. Determination of the mechanism of self-absorption in Ag,,,(P;_(Ge,)S¢ (x =0, 0.1, 0.25, 0.33, 0.5, 0.75, 1.0) solid solutions.
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The coefficient n depends on the nature of the
electronic transition and takes the values 2 or 2/3,
indicating a direct allowed or forbidden transition,
respectively, at n=1/2 or 1/3, the interband transition
is indirect allowed or forbidden, respectively.
In accord with calculations of the energy band
structure inherent to the AggGeSg crystal [20], an attempt
to determine the intrinsic absorption mechanism
was made by constructing only two dependences:
[F (Rd )hv]2 =f (h ) [F (Rd )hv]z/ = f (hv), correspon-
ding to a direct band semiconductor [20, 26]. As a result
of the analysis based on the Tauc method, the graphical
dependences in Fig. 2 were plotted for the processed
diffuse reflection spectra with the Kubelka—Munk
function.

To determine the pseudo-gap values of the
Agr.x(P1_xGey)Se solid solutions, the linear part of the
spectrum was processed using the least-squares function.
The decrease in the pseudo-gap E, at the heterovalent
cationic substitution of P*> — Ge™ was established for
the both direct allowed and direct forbidden optical
transitions (n=2 and 2/3) (Fig.2). Accordingly, the
compositional dependence of the pseudo-gap E, for
Agr(PGe)Ss (x = 0, 0.1, 0.25, 0.33, 0.5, 0.75, 1.0)
solid solutions was plotted (Fig. 3).

An analysis of the compositional dependence of the
pseudo-gap energy of Ag;.(P;Gey)Se solid solutions
shows that heterovalent cationic substitution P*> — Ge**
within the anionic sublattice leads to a monotonic
nonlinear decrease in the pseudo-gap (Fig.3), in both
cases (n =2 and 2/3).

Typically, the compositional dependence of the
pseudo-gap for solid solutions is described by the relation
[24, 27]:

Eg (x)= Eg (O)+[Eg (1)—Eg (0)]x—cx(1—x) ,

where E,(x = 0) = E,(0), E,(x=1) = E (1) are the values
of the pseudo-gap for individual ternary sulfides Ag,PS¢
and AggGeSg, respectively; ¢ is the bowing parameter
that is a measure of deviation from the linearity of the
function E,(x) (Fig. 3, orange dashed lines).

The value of the bowing parameter ¢ may depend
on the deformation of the energy bands. These changes in
the band structure can occur as a result of changes in the
electronegativity P (2.19) — Ge (2.01) and as a result of
structural disorder [19]. The latter is associated with a
change in lattice parameters, deformation of the
structure-forming polyhedra leading to a change in the
bonds.

As a result, it was ascertained that the value of
bowing parameter, when describing the compositional
dependence of the E, values for Ags(P,_,Ge,)Se solid
solutions (Fig.3), is ¢=0.519eV at n=2 and
¢ =0.465 eV at n =2/3. It indicates the non-linear nature
of the compositional behavior of the pseudo-gap
energies. Therefore, cationic heterovalent cationic
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Fig. 3. Compositional dependence of the pseudo-gap energy of
Ag7(P1xGey)Ss (x = 0, 0.1, 0.25, 0.33, 0.5, 0.75, 1.0) solid
solutions.

substitution P* — Ge™ leads to deformations of the
anionic framework of the argyrodite structure, which can
affect the electronic structure of solid solutions. Since the
bowing parameters at different values of the coefficient n
that depends on the nature of the electronic transition are
close (Fig.3), and the determination of the most linear
dependence is a rather controversial factor (Fig. 2), it is
impossible to clearly determine the nature of the
electronic transition, and requires more complex studies
of the band structure.

4. Conclusions

Polycrystalline bulks of Ag;.(P_Ge)S¢ (x = 0, 0.1,
0.25, 0.33, 0.5, 0.75, 1.0) solid solutions were
synthesized using the one-temperature method. By
mechanical grinding in an agate mortar, microcrystalline
powders of Ag;(P;_Ge,)Ss with a crystallite size of
~10...20 pm were obtained. Determination of the
pseudo-gap E, values was carried out by multilevel
approximation. Applied approximation included the
conversion of diffuse reflectance spectra into absorption
spectra by using the Kubelka—Munk function. The
transformed diffuse reflectance spectra were processed
using the Tauc method. As a result, it was established
that the heterovalent cationic substitution P* — Ge**
within the anionic sublattice leads to a monotonous
nonlinear decrease in the pseudo-gap energies,
which confirms the presence of structural disorder in
Ag7.x(P1_xGe,)S¢ solid solutions.
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Cnexrpockorisi 1udy3HOro BitdNTTs TBepAUX PO34MHiB y cucTeMi Ag,PSs-AgsGeSg
T.0. ManaxoBcebka, A.L Moroxin, M.H. ®ixen, 511 Crynensk, O.I1. Koxan, O.B. 3y6axka, B.IO. I3aii, P. Ku§

AHoTamis. 3pa3ku TBepaux po3unHiB Ags(P1_Ge,)S¢ (x = 0, 0.1, 0.25, 0.33, 0.5, 0.75, 1.0) onmepxano y dopmi
MIKpPOKPUCTAIIYHUX MTOPOLIKIB IUISIXOM PO3MEJIIOBaHHS B aratoBiil cTynui. Cnekrpu Tudy3HOro BiIOUTTS OTPUMAaHUX
3pa3kiB TBepauX po3uuHiB Agz,(Pi_«Ge,)Se mocmimkeHo y cekrpanbHoMy miamazoni 200...1400 M npu Temneparypi
293 K. CrhekTpalibHi 3aJIe)KHOCTI TMPOAHATI30BaHO OaraTOpiBHEBOIO AalNpOKCHUMAI€I0 3 BUKOPUCTAHHIM (yHKLii
Kybenkn—MyHka Ta rpadiynoro merony Tayka. BeranoBneno, mo aias TBepaux po3uuHiB Agy. (P ,Ge,)S¢ npu
301bIeHH]I BMicTy (Ge CIIOCTepIiraeThesi 4epBOHUIL 3CyB MOUYaTKy Kparo BinoutTs. ['padivanm metonom Tayka ouiHeHO
TICEBIOIINPUHY 3a00pOHEHOI 30HH TBepAuX po3unHiB Agr, (P Ge,)Se. YcTaHOBIEHO, MO TeTepOBaJICHTHE KaTiOHHE
samimenus P™ — Ge™ y Mekax amioHHOI MiArpaTKM TPHBOAMTH O MOHOTOHHOTO HETiHIMHOrO 3MEHIICHHS
TICEBJOIINPUHA 3a00POHEHOT 30HN.

Kiro4uoBi cjoBa: onTHYHI BIACTHBOCTI, CHEKTPOCKOMIS AM(Y3HOTO BiTOWUTTS, MIKPOKPHCTANIIYHI ITOPOIIKHA, METOX
Tayka, TBep/li pO3YHHHU.
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