Ministry of Education and Science of Ukraine Sumy State University IEEE Nanotechnology Council

## Proceedings of the 2020 IEEE 10<sup>th</sup> International Conference on "Nanomaterials: Applications & Properties" (NAP-2020)

## 2020, Volume 2

A Virtual Conference, November 09–13, 2020

Founded in 2011

Sumy Sumy State University 2020

## SUMY STATE UNIVERSITY Proceedings of the 2020 IEEE 10<sup>th</sup> International Conference on "Nanomaterials: Applications & Properties" (NAP-2020)

### 2020, Volume 2

### COMMITTEES

### ORGANIZING COMMITTEE

| Alexander         | Sumy State University (Ukraine), General Chair                      |
|-------------------|---------------------------------------------------------------------|
| Pogrebnjak        |                                                                     |
| Valentine Novosad | Argonne National Laboratory (USA), General Co-Chair                 |
| Goran Karapetrov  | Drexel University (USA), Technical Program Chair                    |
| Oleksandr         | Taras Shevchenko National University of Kyiv                        |
| Prokopenko        | (Ukraine), Technical Program Co-Chair                               |
| Maksym Pogorelov  | Sumy State University (Ukraine), Technical Program Co-Chair         |
| Katerina Medjanik | Johannes Gutenberg University of Mainz (Germany), Publication Chair |
| Yurii Shabelnyk   | Sumy State University (Ukraine), Secretary                          |
| Oleksii Drozdenko | Sumy State University (Ukraine), Treasurer                          |
| Olena Tkach       | Sumy State University (Ukraine), WIE/WIS Chair                      |
| Anna Marchenko    | Sumy State University (Ukraine), Awards Chair                       |

### INTERNATIONAL SCIENTIFIC COMMITTEE

| Valentine Novosad<br>James E. Morris<br>Alexander Pogrebnjak<br>Andrii Chumak | Argonne National Laboratory (USA), Chair<br>Portland State University (USA), Co-Chair<br>Sumy State University (Ukraine)<br>University of Vienna (Austria) |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bethanie Stadler                                                              | University of Minnesota (USA)<br>Institute of Ion Beam Physics and Materials Research, HZDR                                                                |
| Denise Erb                                                                    | (Germany)                                                                                                                                                  |
| Dmytro Nykypanchuk                                                            | Brookhaven National Laboratory, Center for Functional Nanomaterials<br>(USA)                                                                               |
| Fedir Sizov                                                                   | V.E. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine (Ukraine)                                                                                |
| Geraldine Dantelle                                                            | Institut NEEL (France)                                                                                                                                     |
| Haifeng Ding                                                                  | Nanjing University (China)                                                                                                                                 |
| Jindrich Musil                                                                | University of West Bohemia in Pilsen (Czech Republic)                                                                                                      |
| Leonid Sukhodub                                                               | Sumy State University (Ukraine)                                                                                                                            |
| Montserrat Rivas                                                              | University of Oviedo (Spain)                                                                                                                               |
| Nicoletta Ditaranto                                                           | University of Bari Aldo Moro (Italy)                                                                                                                       |
| Oksana Chubykalo-                                                             | CSIC - Instituto de Ciencia de Materiales de Madrid (Spain)                                                                                                |
| Fesenko                                                                       |                                                                                                                                                            |
| Oleg Lupan                                                                    | Technical University of Moldova (Moldova)                                                                                                                  |
| Oleksandr Tovstolytkin                                                        | Institute of Magnetism NAS of Ukraine (Ukraine)                                                                                                            |
| Pawel Zukowski                                                                | Lublin University of Technology (Poland)                                                                                                                   |
| Tetsuya Nakamura                                                              | Tohoku University (Japan)                                                                                                                                  |
| Vladimir Cambel                                                               | Institute of Electrical Engineering, SAS (Slovakia)                                                                                                        |

| Vladimir Komanicky    | Pavol Jozef Safarik University (Slovakia)                            |
|-----------------------|----------------------------------------------------------------------|
| Vojislav Mitic        | University of Nis (Serbia)                                           |
| Volodymyr Ivashchenko | Institute for Problems of Materials Science NAS of Ukraine (Ukraine) |
| Yonhua Tzeng          | National Cheng Kung University (Taiwan)                              |
| Yuko Ichiyanagi       | Yokohama National University (Japan)                                 |
| Yury Gogotsi          | Drexel University (USA)                                              |
|                       |                                                                      |
|                       |                                                                      |

### **Table of Contents**

### 2020, Volume 2

| Track: Superconductivity in Nanoscale Systems                                                                                                                                                                                                                                                   |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Nonlinear Proximity Effect in a Hybrid Normal Metal-Superconductor Structure<br>E.E. Zubov                                                                                                                                                                                                      | 02SNS01 |
| Nano Superconductivity and Quantum Processing of Information in Living Organisms<br>P. Mikheenko                                                                                                                                                                                                | 02SNS02 |
| Influence of Surface Anions on the Transport Q1D Electrons in Gas Phase over Helium Film<br><i>V.A. Nikolaenko</i>                                                                                                                                                                              | 02SNS03 |
| Track: Nanodevices & Sensors                                                                                                                                                                                                                                                                    |         |
| Application of Nanocellulose in Humidity Sensors for Biodegradable Electronics<br>V. Koval, V. Barbash, M. Dusheyko, V. Lapshuda, O. Yashchenko, Yu. Yakimenko                                                                                                                                  | 02NS01  |
| Direct Laser Writing Technique for Non-enzymatic Sensors Fabtication<br>V. Andriianov, E. Khairullina, A. Smikhovskaia, M. Panov, I. Tumkin                                                                                                                                                     | 02NS02  |
| Track: Nanomaterials for Energy & Environment                                                                                                                                                                                                                                                   |         |
| Effect of Precursor Type on Physico-Chemical and Photocatalytic Properties of $TiO_2$ -SnO <sub>2</sub><br>Nanocomposites                                                                                                                                                                       |         |
| K. Bila, T. Dontsova, A. Kutuzova                                                                                                                                                                                                                                                               | 02NEE01 |
| Nanocomposite Sorbents Based on TiO <sub>2</sub> Containing Manganese Spinel for Concentration of Lithium<br>Ions<br>L.N. Ponomarova, M. Chaban, L. Rozhdesvenska, Yu. Dzyazko, A. Palchik                                                                                                      | 02NEE02 |
| Electrical Conductivity of Ceramics Based on(Cu <sub>1-x</sub> Ag <sub>x</sub> ) <sub>7</sub> SiS <sub>5</sub> I Nanocrystalline Powders<br>A. Pogodin, I. Studenyak, I. Shender, S. Bereznyuk, M. Filep, O. Kokhan                                                                             | 02NEE03 |
| The Influence of Nanosized Zirconium (IV) Oxide on the Catalytic Curing of Epoxy Resin ED-20 with Isomethyltetrahydrophthalic Anhydride <i>E. Bakhalova, E. Shved, Yu. Bespalko, O. Gorban, K. Yutilova</i>                                                                                     | 02NEE04 |
| Formation of C/Zn C/Ni Nanocomposites for Potential Application in Electrodes of LIB<br>A. Kornyushchenko, S. Shevchenko, V. Natalich, V. Perekrestov                                                                                                                                           | 02NEE05 |
| Charge Storage Mechanisms and Suppressing the Self-Discharge Processes of Carbon-based<br>Supercapacitor Technology: A Review<br>J.N. Patricio, M.L.M. Budlayan, S. Del Rosario Arco                                                                                                            | 02NEE06 |
| Chemical Vapor Deposition Routes for Fluorine- and Sulfur-containing Activated Carbon Acid<br>Catalysts: Comparison of Fluorination Methods<br>L. Grishchenko, A.N. Zaderko, S. Chernenko, A. Vakaliuk, O. Mischanchuk, G.G. Tsapyuk,<br>A. Yatsymyrskyi, V.E. Diyuk, O. Boldyrieva, V. Lisnyak | 02NEE07 |
| Quality Indicators of Ammonium Nitrate with Nanoporous Surface Structure: Final Drying Stage N. Artyukhova, J. Krmela, V. Krmelova                                                                                                                                                              | 02NEE08 |
| Technological Basis for the Production of Ammonium Nitrate with a Nanoporous Surface and Near-<br>surface Structure in Combined Flow Motion Devices<br><i>A. Artyukhov, K. Berladir, J. Krmela</i>                                                                                              | 02NEE09 |

| Comparison of Electrical Properties of Moistured Pressboard Impregnated with New and Used<br>Synthetic Ester<br><i>K. Kierczynski, M. Zenker</i>                                                                              | 02NEE10 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Computer Simulation of Percolation in a Two-dimensional Square Network<br>P. Okal                                                                                                                                             | 02NEE11 |
| Study of Power Transformer Insulation Model. The X-Y Model of Oil Impregnated Pressboard -<br>Water Nanodrops - Insulating Oil Composite<br><i>P. Rogalski</i>                                                                | 02NEE12 |
| Research of AC Electrical Properties of ZrC Nanocomposite Produced by Magnetron Sputtering<br>V. Bondariev, I. Lebedynskyi                                                                                                    | 02NEE13 |
| Functional Polymer Coated MoS2 Nanocomposites as Promising Lithium Current Sources<br>O. Balaban, N. Mitina, A. Zaichenko, O. Paiuk, Yu. Shermolovich                                                                         | 02NEE14 |
| Physical and Electrochemical Properties of TiO2 Nanotubes for Energy Storage Application<br>El-Hadi Khoumeri, H. Fraoucene                                                                                                    | 02NEE15 |
| A Comparative Study on the Stability and Degradation of Perovskite Solar Cells<br>J. Chakraborty, L. Jiao                                                                                                                     | 02NEE16 |
| Track: Biomedical Applications                                                                                                                                                                                                |         |
| Synthesis and Study of the Photodynamic Activity of Titanium Based Nanocomposites on MDA-MB-<br>231 Cells                                                                                                                     |         |
| Pravena Ramachandran, Chong Yew Lee, Boon Keat Khor, Ruey-An Doong, Chern Ein<br>Oon, Hooi Ling Lee                                                                                                                           | 02BA01  |
| Sorption Composite Based on Hydroxyapatite and Biopolymers for Drainage of Purulent Cavities<br>M. Kumeda, L. Sukhodub, V. Beilai, L. Sukhodub, S. Zhdanov                                                                    | 02BA02  |
| Proton Beam Writing on Chitosan Films for Bionanomedicine and Microfluidics: Pilot Experiments<br>O. Kalinkevich, H. Polozhii, S. Kolinko, Y. Zinchenko, A. Kalinkevich, S.N. Danilchenko,<br>A.G. Ponomarev, I.Yu. Protsenko | 02BA03  |
| Biopolymer Composite Nanostructured Material Based on Chitosan and Brilliant Green                                                                                                                                            |         |
| Triarylmethane Dye<br>A. Sklyar, O. Kalinkevich, V. Holubnycha, Ye. Zinchenko, A. Kalinkevich, S. Danilchenko,<br>Ya. Trofimenko, V. Chivanov, V. Starikov, D. Sofronov                                                       | 02BA04  |
| ROS-sensitive Dyes in Lipid Nanoparticles for in vivo Imaging<br>T. Abakumova, T. Prikazchikova, I. Aparin, A. Vaneev, P. Gorelkin, A. Erofeev, T. Zatsepin                                                                   | 02BA05  |
| Studying Stem Cells With Iron Oxide Nanoparticles<br>V. Budnyk, L. Lukash, O. Papuga, M. Budnyk, S. Lukash, I. Uvarova                                                                                                        | 02BA06  |
| Viricidal Potential of Plasmonic and Metal Oxide Nanostructures: A Review<br>Marco Laurence Mondejar Budlayan, Jonathan Nacalaban Patricio, Susan Del Rosario<br>Arco, Rey Yonson Capangpangan                                | 02BA07  |
| Structural and Biological Assessment of Mg Alloy Surface after Plasma Electrolytic Oxidation in                                                                                                                               |         |
| Different Solutions<br>Ye. Husak, V. Kornienko, W. Simka, O. Oleshko, T. Oleshko, B. Dryhval, Ju. Dudko,<br>M. Pogorielov                                                                                                     | 02BA08  |

| Bio-functionalization of Electrospun Polymeric Nanofibers by Ti3C2Tx Mxene                                                                                            |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| S. Kyrylenko, O. Oleshko, V. Zahorodna, Yu. Zozulia, V. Kornienko, M. Kolesnyk,<br>V. Buranich, V. Balitskyi, I. Baginskiy, O. Gogotsi, O. Mishchenko, A. Pogrebnjak, |          |
| M. Pogorielov                                                                                                                                                         | 02BA10   |
|                                                                                                                                                                       |          |
| Physical and Chemical Characterization of The Magnesium Surface Modified By Plasma Electrolytic Oxidation – Influence of Immersion In Simulated Body Fluid            |          |
| O. Oleshko, Ye. Husak, T. Oleshko, V. Kornienko, S. Kyrylenko, B. Dryhval, Ju. Dudko,                                                                                 |          |
| W. Simka, M. Pogorielov                                                                                                                                               | 02BA11   |
| Track: Theory & Modeling                                                                                                                                              |          |
|                                                                                                                                                                       |          |
| Shear Acoustic Phonons in AlN/GaN Nanostructures in the Presence of the Piezoelectric Effect<br>I. Boyko, H. Tsupryk, Yu. Stoianov                                    | 02TM01   |
| 1. Doyko, 11. 1supryk, 1ú. Stolanov                                                                                                                                   |          |
| Effect of Interface Phonons on the Electron Spectrum in Far Infrared Range Quantum Cascade                                                                            |          |
| Detector at Cryogenic Temperature                                                                                                                                     |          |
| E. Vereshko, Ju. Seti, M. Tkach                                                                                                                                       |          |
| Electrical Properties of Doped Germanium Nanofilms                                                                                                                    |          |
| S. Luniov, O. Burban, Yu. Koval                                                                                                                                       | 02TM03   |
| Modelling of the Formation of p-p+ Transitions under the Influence of Pulsed Laser Irradiation in p-Ge                                                                |          |
| <i>R. Peleshchak, O. Kuzyk, O. Dan'kiv</i>                                                                                                                            |          |
|                                                                                                                                                                       |          |
| The Semi-Empirical Approach for Newtonian Nanofluids Viscosity Predicting                                                                                             |          |
| O. Khliyeva, V. Zhelezny, N. Khliiev, Ya. Hlek                                                                                                                        |          |
| Modeling the Mechanisms of Fracture Formation in Nanomodified Polymers                                                                                                |          |
| A.V. Gondlyakh, A.E. Kolosov, V.Yu. Shcherbina, A.L. Sokolskiy, A.O. Chemeris,                                                                                        |          |
| S.I. Antonyuk                                                                                                                                                         | 02TM06   |
| Kinetics of the Formation of Ferroelectric Regular Domain Structures upon Second Order Phase                                                                          |          |
| Transition                                                                                                                                                            |          |
| O.Yu. Mazur, L.I. Stefanovich                                                                                                                                         | 02TM07   |
| The Polarizing Phonons Influence on the Energy Shift of Electrons in the Quantum Dot                                                                                  |          |
| <i>C. Tovstyuk</i>                                                                                                                                                    | 02TM08   |
|                                                                                                                                                                       | 02111100 |
| Physico-chemical Characteristics of Components as a Factor in the Formation of Nanoamorphous                                                                          |          |
| Structure in the Al87RE5Ni8(Fe) System<br>Kh. Khrushchyk, M. Lopachak, L. Boichyshyn, N. Pandiak, B. Kotur, T. Hula                                                   | 02TM00   |
| Кп. Кп изнепук, 14. Lopaenak, L. Dolenysnyn, N. 1 анашк, D. Kolur, 1. Пина                                                                                            |          |
| Critical Properties Study of Exactly Solved Spin Models for Ferromagnets and Ferroelectics                                                                            |          |
| A.N. Galdina, A.N. Turinov                                                                                                                                            | 02TM10   |
| Development of the Model for Describing the Electrical Conductivity of Polyether-CNT Systemse                                                                         |          |
| E. Lysenkov, Ye. Davydenko                                                                                                                                            | 02TM11   |
|                                                                                                                                                                       |          |
| Track: Symposium on Additive Manufacturing and Applications                                                                                                           |          |
| Parts Diamond Burnishing Process Regimes Optimization Made of INCONEL 718 Alloy via                                                                                   |          |
| Selective Laser Sintering Method                                                                                                                                      |          |
| Ye. Vyshnepolskyi, D. Pavlenko, D. Tkach, Ya. Dvirnyk                                                                                                                 | 02SAMA01 |
| Crack Arresters Design for Fatigue Strength Improvement of Additively Manufactured Components                                                                         |          |
| P. Ferro, S. Rosso, G. Savio, R. Meneghello, F. Berto, S.M.J. Razavi                                                                                                  | 02SAMA02 |

| The Active Wave Resistance Determination of Hollow Perforated Rotor of Electromechanical Converter                                                                                                                  |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| M. Zablodskiy, O. Tymofieieva, V. Gritsyuk                                                                                                                                                                          | 02SAMA03 |
| Numerical and Experimental Analysis of Additive Manufactured Porous Regenerator for Stirling<br>Cryocooler                                                                                                          |          |
| K.V. Srinivasan, A. Mahalingam, R. Metla                                                                                                                                                                            | 02SAMA04 |
| In-situ Alloying as a Novel Methodology in Additive Manufacturing<br>A. Katz-Demyanetz, A. Koptyug, V.V. Popov Jr.                                                                                                  | 02SAMA05 |
| Experimental Study of Aluminum Foams Thermal Conductivity. Prospects of Additive Manufacturing for Novel Heat Exhangers Production<br><i>A. Kovalevsky, A. Mats, M. Shmurak, A. Fleisher</i>                        | 02SAMA06 |
| Investigation of the Printing Parameters Influence on the Bond Lines Length in Fused Filament Fabrication                                                                                                           |          |
| L. Hurina, Ye. Vyshnepolskyi, D. Pavlenko, D. Stepanov                                                                                                                                                              | 02SAMA07 |
| Effect of Build Orientation in Electron Beam Melting of Ti-6Al-4V Specimens<br>G. Muller-Kamskii, S. Stepanov, E. Strokin, A. Kolomiets, I. Kovalevskyi, A. Popov                                                   | 02SAMA08 |
| Advantages of 3D Printing for Gynecology and Obstetrics: Brief Review of Applications,<br>Technologies, and Prospects<br><i>E.V. Kudryavtseva, V.V. Popov Jr., G. Muller-Kamskii, E.S. Zakurinova, V.V. Kovalev</i> | 02SAMA09 |
| 3D Printed Lattice Structures: A Brief Review<br>A.H. Reddy, S. Davuluri, D. Boyina                                                                                                                                 | 02SAMA10 |
| Investigation of Injection Moulded UHMWPE Liner Manufacturability<br>K. Keszei, N.K. Kovács                                                                                                                         | 02SAMA11 |
| Buckling Behavior of Isogrid Composite Structures Obtained by Fused Deposition Modeling Technique                                                                                                                   |          |
| A. Forcellese, L. Greco, T. Mancia, M. Pieralisi, M. Simoncini                                                                                                                                                      | 02SAMA12 |
| CAD-platform-based Process Optimization Design Method by Selective Laser Melting Simulation<br>E. Dalpadulo, F. Pini, F. Leali                                                                                      | 02SAMA13 |
| Supply Chain and Cost Evaluation for Laser Powder Bed Fusion<br>M. Schneck, M. Schmitt, G. Schlick                                                                                                                  | 02SAMA14 |
| Predicting the Properties of the Refractory High-Entropy Alloys for Additive Manufacturing- Based<br>Fabrication and Mechatronic Applications<br><i>V. Buranich, V. Rogoz, B. Postolnyi, A. Pogrebnjak</i>          | 02SAMA15 |
| Creation of Volumetric Products Using Additive Arc Cladding with Compact and Powder Filler<br>Materials                                                                                                             |          |
| V. Kvasnytskyi, V. Korzhyk, I. Lahodzinskyi, Ye. Illiashenko, S. Peleshenko, O. Voitenko                                                                                                                            | 02SAMA16 |
| Surface Polishing of Laser Powder Bed Fused Superalloy Components by Magnetic Post-treatment<br>D. Lesyk, S. Martinez, V. Dzhemelinskyi, O. Stamann, B. Mordyuk, A. Lamikiz                                         | 02SAMA17 |
| Smart Modelling of Additively Manufactured Metamaterials<br>G.F. de Vera Conrado, B.C. Daniel                                                                                                                       | 02SAMA18 |
| Advanced Smoothing for Voxel-based Topologically Optimized 3D Models<br>A. Bacciaglia, A. Ceruti, A. Liverani                                                                                                       | 02SAMA19 |

| Graded Gyroid Structures for Load Bearing Orthopedic Implants<br>L. Guariento, F. Buonamici, A. Marzola, Y. Volpe, L. Governi                                                                                                                                                                                             | 02SAMA20 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Machine-Learning Based Modelling for AM Processes<br>H. Li                                                                                                                                                                                                                                                                | 02SAMA21 |
| Tracking Additive Manufacturing Using Machine Vision<br>L.A. Davis IV, J.S. Donnal, M.D.M. Kutzer                                                                                                                                                                                                                         | 02SAMA22 |
| Producing High Precision Additive Manufacturing Parts by Direct Printing of NURBS Surfaces<br>H. Gohari, A. Barari                                                                                                                                                                                                        | 02SAMA23 |
| 3D Printable Pneumatic Valves for Rapidly Manufacturable Mechanical Ventilator Amid Covid-19<br>Outbreak                                                                                                                                                                                                                  |          |
| H. Gohari, D. Bender, A. Barari                                                                                                                                                                                                                                                                                           | 02SAMA24 |
| Track: Interdisciplinary Topics                                                                                                                                                                                                                                                                                           |          |
| Structure Peculiarities of the Surface Layers of Structural Steel under Laser Alloying<br>O. Berdnikova, O. Kushnaryova, A. Bernatskyi, T. Alekseienko, Ye. Polovetskyi,<br>M. Khokhlov                                                                                                                                   | 02IT01   |
| The Study of Micro - and Nanostructural Characteristics of Ostrich (Struthio camelus) Eggshell by the<br>Method of Temperature-Programmable Mass Spectrometry (TPD-MS)<br>O.G. Bordunova, V.B. Loboda, R.V. Dolbanosova, P.S. Danylchenko, S.M. Danilchenko,<br>V.D. Chivanov, V.V. Popsui, A.O. Stepanenko, O.I. Ivanova | 021T02   |
| Investigation of Surface Morphology and Shell Crystal Structure on the Mineral Fertilizer Granules<br>S. Vakal, A. Yanovska, V. Vakal, T. Yarova, A. Artyukhov, V. Shkola                                                                                                                                                 |          |
| Controlling the Microstructural Properties of Magnetic Iron Oxide Synthesized using Brown Seaweed (Sargassum Crassifolium) Extract J.N. Patricio, S. Del Rosario Arco, Rey Y. Capangpangan, A.C. Alguno, M.L.M. Budlayan                                                                                                  | 02IT04   |
| Radiomodifying Effect of X-Ray Radiation on Microflora of Yogurts with Ultradisperse Powders of<br>Beta Vulgaris<br>M.M. Samilyk, A.O. Gelih, O.V. Kalinkevich, N.V. Bolgova, I.V. Shelest, Y.V. Trofimenko,<br>Ye.Zinchenko, V. Chivanov, A. Kalinkevich                                                                 | 021T05   |
| Thermo-electric Impact of Nano-Materials on Transformer Oil and Synthetic Ester Oil<br>Rao Hasanain Muzaffar Ali, Mohd Faraz Alam, Khalid Abdullah Khan, Sughra Muzaffar                                                                                                                                                  |          |

# Electrical Conductivity of Ceramics Based on (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>SiS<sub>5</sub>I Nanocrystalline Powders

Ihor Studenyak Faculty of Physics Uzhhorod National University Uzhhorod, Ukraine studenyak@dr.com

Serhiy Bereznyuk Faculty of Physics Uzhhorod National University Uzhhorod, Ukraine serhii.berezniuk@outlook.com Artem Pogodin Faculty of Chemistry Uzhhorod National University Uzhhorod, Ukraine artempogodin88@gmail.com

Michael Filep Faculty of Chemistry Uzhhorod National University Uzhhorod, Ukraine mfilep23@gmail.com Iryna Shender Faculty of Physics Uzhhorod National University Uzhhorod, Ukraine shender95@gmail.com

Oleksandr Kokhan Faculty of Chemistry Uzhhorod National University Uzhhorod, Ukraine aleksandr.kokh@gmail.com

Abstract—Ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$ nanocrystalline powders were manufactured by pressing them at ~ 400 MPa pressure and subsequent annealing at 973 K during 36 hours. Investigations of electrical conductivity of ceramics based on  $(Cu_{1-x}Ag_x)_7SiS_5I$  solid solutions were carried out by the method of impedance spectroscopy in the frequency range from 10 Hz to  $2\times10^6$  Hz and in the temperature range 292-383 K. It is established that with increasing the content of silver atoms in ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$ , the ionic component of electrical conductivity increases nonlinearly, while electronic component decreases nonlinearly, and their ratio increases nonlinearly and for  $Ag_7SiS_5I$  exceeds 60000.

## Keywords—solid solutions, ceramics, electrical conductivity, activation energy, compositional dependence.

### I. INTRODUCTION

Ceramic materials are widely used due to their unique properties (structural, mechanical, chemical, functional ones, etc.). High values of melting point, modulus of elasticity, hardness and low thermal expansion of ceramic materials do not limit the scope of their use by engineering problems, but also significantly expand them [1-4]. Presently, ceramic materials are actively used in medicine, biochemistry, optics, thermoelectricity, electronics and electrochemistry [5-9].

Presently, the study of electrochemical ceramic materials has received considerable development due to the study and improvement of electrochemical energy storage technologies [10, 11]. The rapid development of these technologies is caused by both the development of alternative energy sources and electric vehicles, and the increase in the number of portable electronic devices [12-14].

Electrochemical capacitors (supercapacitors), batteries and fuel cells are used as electrochemical energy storage devices [11]. Li-ion batteries containing liquid organic electrolyte received most commercial distribution [9, 15, 16]. However, the combination of chemically active lithium and flammable liquid reduces the safety of the device [15].

When using a solid electrolyte instead of liquid one, there exists a splendid opportunity to improve the safety of batteries, as well as simplify their design [14, 17-21]. Solid electrolytes that can be used in solid-state batteries are

Since the efficiency of batteries depends directly on the properties of the working material, the search and improvement of new materials is especially relevant. Sulphur-containing solid electrolytes, among which complex phosphorus sulphides of Li<sup>+</sup> and Na<sup>+</sup> are noteworthy, attract considerable attention due to the high ionic conductivity, which is ensured by the peculiarities of their crystal structure [14, 18, 22-25]. Since sulphur-containing superionic compounds with ionic conductivity on Li<sup>+</sup> and Na<sup>+</sup> cations are difficult to obtain in the crystalline state [24], they are

conventionally divided into three groups: inorganic (crystal,

or glass-ceramic) substances, organic polymers and hybrid

materials. Oxides, phosphates and complex sulphides are

used as functional solid-state inorganic materials [17-19].

Compounds of the argyrodite family [28-31], which are characterized by high values of ionic conductivity are considered promising superionic materials. Features of their crystal structure (tetrahedral dense packaging) and high variability of compositions [32, 33] contribute to the formation of solid solutions on their basis.

obtained in glass-ceramic form [23, 24, 26, 27].

The purpose of this study is to produce and carry out electrical investigation of ceramic samples based on nanocrystalline powders of  $(Cu_{1-x}Ag_x)_7SiS_5I$  solid solutions as well as to study the influence of  $Cu \rightarrow Ag$  cationic substitution on their electrical parameters.

### II. EXPERIMENT METHODOLOGY

Synthesis of  $Cu_7SiS_5I$  and  $Ag_7SiS_5I$  was carried out from the simple substances: copper (99.999%), silver (99.995%), silicon (99.99997%), sulfur (99.999%) and pre-synthesized binary cuprum (I) iodide and argentum (I) iodide, taken in stoichiometric ratios in vacuated to 0.13 Pa quartz ampoules. The binary cuprum (I) iodide and argentum (I) iodide were further purified by vacuum distillation and directional crystallization, respectively. The synthesis regime of  $Cu_7SiS_5I$  and  $Ag_7SiS_5I$  included step heating up to 723 K at a rate of 100 K/h (shuttering during 48 hours), further increase of temperature to 1470 K ( $Cu_7SiS_5I$ ) and 1230 K for  $Ag_7SiS_5I$  at a rate of 50 K/h and shuttering at this temperature for 24 hours. Cooling was performed in the oven off mode. Alloys of Cu<sub>7</sub>SiS<sub>5</sub>I–Ag<sub>7</sub>SiS<sub>5</sub>I system were synthesized by a direct one-temperature method from pre-synthesized Cu<sub>7</sub>SiS<sub>5</sub>I and Ag<sub>7</sub>SiS<sub>5</sub>I. The synthesis mode included step heating at a rate of 100 K/h to 1023 K and shuttering at that temperature for 24 hours, further raising the temperature to 1470 K at a rate of 50 K/h and shuttering at that temperature for 72 hours. The annealing temperature constituted 873 K, and shuttering took 120 hours. Cooling to room temperature was carried out in the oven off mode.

Synthesized solid solutions  $(Cu_{1-x}Ag_x)_7SiS_5I$  (x= 0.25, 0.5, 0.75, 1) were used for the production of ceramic samples by solid-phase sintering of pressed nanocrystalline powders o the corresponding compositions. Nanocrystalline powders were obtained by grinding the synthesized compounds and solid solutions based on them in the planetary ball mill PQ-N04 during 30 minutes at a rate of 200 rpm to 150 nm, what is established using SEM microscopy. Pressing of samples was carried out at a pressure of  $\sim 400$  MPa, annealing - at 973 K during 36 hours. Ceramic samples of (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>SiS<sub>5</sub>I solid solutions were obtained in the form of disks with a diameter of 8 mm and a thickness of 3-4 mm. To determine the size of crystallites after annealing, the ceramic samples were investigated by microstructural analysis using metallographic microscope METAM-R1 (Fig.3). According to the results of the analysis of obtained microstructures, histograms of distribution of crystallites were plotted and it was found that ceramic samples are characterized by a fairly homogeneous microstructure, which is described by distribution of crystallites in a rather narrow interval. It is established that after recrystallization, the average size of crystallites for ceramic samples obtained from nanocrystalline powders constitutes  $\sim 5 \ \mu m$ .

Measurements of electrical conductivity of ceramic samples based on Cu<sub>7</sub>SiS<sub>5</sub>I, Ag<sub>7</sub>SiS<sub>5</sub>I and (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>SiS<sub>5</sub>I (x= 0.25, 0.5, 0.75, 1) solid solutions were carried out by impedance spectroscopy method [34] in frequency 10— 2×10<sup>6</sup>Hz and temperature 292-383 K ranges using highprecision LCR meters Keysight E4980A and AT-2818. The amplitude of the alternating current constituted 10 mV. Measurements were carried out by a two-electrode method on blocking (electronic) gold contacts. Gold contacts for measurements were applied by chemical precipitation from solutions [35, 36].

### **III. RESULTS AND DISCUSSION**

For all ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_3I$  there is an increase in the total electrical conductivity with increasing frequency (Fig. 1), which is characteristic for the materials with ionic conductivity in the solid state [37]. On the basis of the obtained results, we constructed the compositional dependence of the total electrical conductivity at a frequency of 100 kHz, which shows that  $Cu^+ \rightarrow Ag^+$ cationic substitution leads to a monotonous nonlinear increase in the total electrical conductivity that manifests itself in the presence of an insignificant minimum for the composition ( $Cu_{0.5}Ag_{0.5}$ )<sub>7</sub>SiS<sub>5</sub>I (insert to Fig. 1).

For detailed studies of frequency behavior of total electrical conductivity and its separation into ionic and electronic components, a standard approach was applied including the use of electrode equivalent circuits and their analysis on Nyquist plots [34, 37, 38]. The parasitic inductance of the cell ( $\sim 2 \times 10^{-8}$  H) was taken into account during the analysis of all samples.

According to the results of the analysis of impedance spectra, the temperature and compositional behavior of ionic and electronic components of electrical conductivity of ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$  were studied. It is established that with an increase in the content of silver atoms, the ionic component of electrical conductivity in the process of cationic substitution during  $(Cu_{0.75}Ag_{0.25})_7SiS_5I \rightarrow (Cu_{0.25}Ag_{0.75})_7SiS_5I \rightarrow Ag_7SiS_5I$  transition nonlinearly increases, while the value of the electronic component nonlinearly decreases (Fig.2).

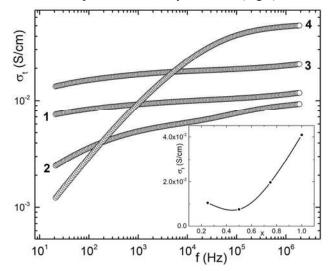



Fig. 1. Frequency dependences of total electrical conductivity at 298 K temperature for ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I:$   $(Cu_{0.75}Ag_{0.25})_7SiS_5I$  (1),  $(Cu_{0.5}Ag_{0.5})_7SiS_5I$  (2),  $(Cu_{0.25}Ag_{0.75})_7SiS_5I$  (3) and Ag<sub>7</sub>SiS<sub>5</sub>I (4). The insert shows the compositional dependence of total electrical conductivity of  $(Cu_{1-x}Ag_x)_7SiS_5I$  ceramic samples at a frequency of 100 kHz.

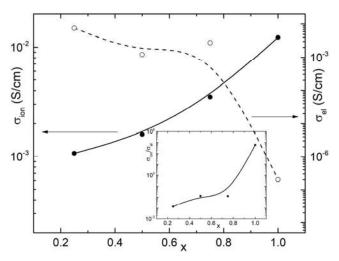



Fig. 2. Compositional dependences of ionic and electronic components of electrical conductivity at 298 K for ceramic samples based on  $(Cu_{1.x}Ag_{x.y})_7SiS_5I$ . On the insert, the compositional dependence of the ratio of the ionic to electronic component of electrical conductivity for  $(Cu_{1-x}Ag_{x.y})_7SiS_5I$  ceramic samples is presented.

A very important characteristic of superionic materials is represented by the ratio of the ionic component of electrical conductivity to the electronic one, the compositional dependence of which is shown on the insert to Fig. 2.

It should be noted that when copper atoms are substituted by silver atoms in ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$  the ratio  $\sigma_{ion}/\sigma_{el}$  increases nonlinearly, and for

Ag<sub>7</sub>SiS<sub>5</sub>I the ionic component of electrical conductivity exceeds the electronic one by more than 60000 times.

Fig. 3 shows the temperature dependences of ionic and electronic components of electrical conductivity in Arrhenius coordinates. It is established that they are linear and are described by the Arrhenius law, which testifies to the thermoactivating character of conductivity. With their help, the values of activation energy were determined, both for the ionic and for the electronic components of electrical conductivity (Fig. 4).

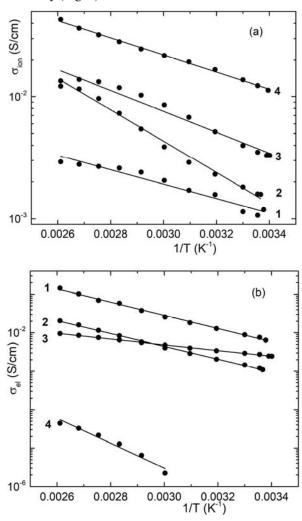



Fig. 3. Temperature dependences of ionic (a) and electronic (b) components of electrical conductivity for ceramic samples based on  $(Cu_{1.x}Ag_x)_7SiS_5I$ :  $(Cu_{0.75}Ag_{0.25})_7SiS_5I$  (1),  $(Cu_{0.5}Ag_{0.5})_7SiS_5I$  (2),  $(Cu_{0.25}Ag_{0.75})_7SiS_5I$  (3),  $Ag_7SiS_5I$  (4).

A nonlinear decrease of the activation energy with a maximum for  $(Cu_{0.5}Ag_{0.5})_7SiS_5I$  (the value of the activation energy at the maximum is  $E_{a(ion)}=0.419 \text{ eV}$ ) is revealed on the compositional dependence of activation energy of ionic components of electrical conductivity at increase of silver atoms content in ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$  solid solutions. In this case, the activation energy of the electronic component of electrical conductivity during  $Cu^+ \leftrightarrow Ag^+$  cationic substitution nonlinearly increases with a minimum for  $(Cu_{0.25}Ag_{0.75})_7SiS_5I$  (the value of the activation energy at a minimum is  $E_{a(el)}=0.294 \text{ eV}$ ).

It should be noted that ceramic samples prepared on the basis of  $(Cu_{1-x}Ag_x)_7SiS_5I$  solid solutions are characterized by complex and disordered structure. This is caused, primarily, by the different sizes of crystallites, the nature of their

distribution and the complex process of recrystallization during the annealing of samples. Recrystallization process involves the enlargement of crystallites due to solid-phase diffusion processes, and it is accompanied by the emergence of microstructural heterogeneities that contribute to the emergence of micro- and macrodefects. This additionally leads to the appearance of internal voltage of the ceramic material. Here we should also add the processes of composite disordering of the crystal lattice of  $(Cu_{1-x}Ag_x)_7SiS_5I$  solid solutions caused by the cationic substitution  $Cu^+ \leftrightarrow Ag^+$ . The combination of the aforementioned features causes corresponding changes not only in the overall electrical conductivity, but also in the ionic and electronic components.



Fig. 4. Compositional dependences of the activation energy for ionic and electronic components of electrical conductivity for ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$ .

### IV. CONCLUSIONS

Compounds of (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>SiS<sub>5</sub>I solid solutions are synthesized and ceramic samples are made on their basis by pressing and sintering nanocrystalline powders. According to the results of micro-structural analysis, it was established that, as a result of recrystallization, the average size of crystallites for ceramic samples constitutes  $\sim 5 \ \mu m$ . On the obtained ceramic samples, the total electrical conductivity was measured by impedance spectroscopy method in the frequency range from 10 Hz to 2 MHz and in 292-383 K temperature range. It is found that cationic  $Cu^+ \rightarrow Ag^+$  substitution leads to a monotonous nonlinear growth of total electrical conductivity of ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$ .

On the basis of frequency dependences of total electrical conductivity, Nyquist diagrams were plotted, which were further analyzed using electrode equivalent circuits. Using this approach, the total electrical conductivity was divided into ionic and electronic components. It is established that an increase in the content of silver atoms in ceramic samples based on  $(Cu_{1-x}Ag_x)_7SiS_5I$  leads to a nonlinear increase of the ionic component, nonlinear decrease in the electronic component, and nonlinear growth of the ratio of the ionic component to the electronic one.

It is shown that the temperature dependences of ionic and electronic components of total electrical conductivity of ceramic samples based on (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>SiS<sub>5</sub>I are described by

### 02NEE03-3

Arrhenius law, which confirms the thermoactivation nature of electrical conductivity.

### REFERENCES

- M. Bengisu, "Engineering Ceramics., Part 6. Applications of Ceramic Materials," in Engineering Ceramics. Engineering Materials, Springer, Berlin: Heidelberg., 2001, pp. 407–445.
- [2] R. N. Katz, "Overview of Ceramic Materials, Design, and Application. Mechanical Engineers', Handbook Volume I. Materials and Engineering Mechanics. Part 1. Materials.," John Wiley & Sons, 2015.
- [3] W. R. Matizamhuka, "Advanced ceramics the new frontier in modern-day technology: Part I," J. S. Afr. Inst. Min. Metall, vol. 118, pp. 757–764, July 2018.
- [4] K. R. Kambale, A. Mahajan, S. P. Butee, "Effect of grain size on the properties of ceramics," Metal Powder Report., vol. 74, pp. 130–136, May–June 2019.
- [5] M. Vallet-Regí, "Ceramics for medical applications," J. Chem. Soc., DaltonTrans., pp. 97–108, Jan. 2001.
- [6] Z. Xiao, S. Yu, Y. Li, S. Ruan, L.B. Kong, Q. Huang, Z. Huang, K. Zhou, H. Su, Z. Yao, W. Que, Y. Liu, T. Zhang, J. Wang, P. Liu, D. Shen, M. Allix, J. Zhang, D. Tang, "Materials development and potential applications of transparent ceramics: A review," Mater. Sci. Eng.: R: Report., vol. 139, no. 100518, Jan. 2020.
- [7] R.-Z. Zhang, M. J. Reece, "Review of high entropy ceramics: design, synthesis, structure and properties," J. Mater. Chem. A., vol. 7, pp. 22148–22162, Sep. 2019.
- [8] X. Hao, "A review on the dielectric materials for high energy-storage application," J. Adv. Dielectr., vol. 3, no. 1330001, April 2013.
- [9] Y. Arinicheva, M. Wolff, S. Lobe, C. Dellen, D. Fattakhova-Rohlfing, O. Guillon, D. Bohm, F. Zoller, R. Schmuch, J. Li, M. Winter, E. Adamczyk, V. Pralong, "Advanced Ceramics for Energy Conversion and Storage (10 - Ceramics for electrochemical storage)" Elsevier Series on Advanced Ceramic Materials, pp. 549–709, Nov. 2019.
- [10] Y. Gogotsi, P. Simon, "True performance metrics in electrochemical energy storage," Science, vol.334, pp. 917–918, Nov. 2011.
- [11] V. Fernao Pires, E. Romero-Cadaval, D.Vinnikov, I. Roasto, J.F. Martins, "Power converter interfaces for electrochemical energy storage systems – A review," Energ. Convers. Managem., vol. 86, pp. 453–475, October 2014.
- [12] H. Li, X. Zhang, Z. Zhao, Z. Hu, X. Liu, G. Yu, "Sodium-Ion Based Energy Storage Devices: Recent Progress and Challenges," Energ. Storage Mater., vol.26, pp. 83–104. Apr. 2020.
- [13] B. Nykvist, M. Nilsson, "Rapidly falling costs of battery packs for electric vehicles," Nature Clim Change, vol. 5, pp. 329–332, March 2015.
- [14] Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan, "Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review," Renew. Sustain. Energ. Rev., vol. 109, pp. 367–385, July 2019.
- [15] J. Wen, Y. Yu, C. Chen, "A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions," Mater. Express, vol. 2, pp.197–212, Sept. 2012.
- [16] J. B. Goodenough, K.-S. Park, "The Li-ion rechargeable battery: a perspective," J. Am. Chem. Soc., vol.135., pp. 1167–1176, Jan. 2013.
- [17] J. Janek, W. Zeier, "A solid future for battery development," Nat. Energy, vol.1, no. 16141, Sept. 2016.
- [18] J. W. Fergus, "Ceramic and polymeric solid electrolytes for lithiumion batteries," J. Power Source., vol. 195, pp. 4554–4569, Aug. 2010.
- [19] Z. Zhang, Q. Zhang, C. Ren, F. Luo, Q. Ma, Y.-S. Hu, Z. Zhou, H. Li, X. H., L. Chen, "A ceramic/polymer composite solid electrolyte for sodium batteries," J. Mater. Chem. A, vol. 4, pp. 15823–15828, Sept. 2016.

- [20] Y. Wang, W. Richards, S. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, "Design principles for solid-state lithium superionic conductors," Nat. Mater., vol.14, pp. 1026–1031, Aug. 2015.
- [21] C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, W.-Q Han, "Recent advances in inorganic solid electrolytes for lithium batteries," Front. Energy Res., vol.2, no. 25, June 2014.
- [22] P.-J. Lian, B.-S. Zhao, L.-Q. Zhang, N. Xu, M.-T. Wu, X.-P. Gao, "The inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries," J. Mater. Chem. A, vol. 7, pp. 20540–20557, Aug. 2019.
- [23] K. H. Park, D. H. Kim, H. Kwak, S. H. Jung, H.-J. Lee, A. Banerjee, J. H. Lee, Y. S. Jung, "Solution-Derived Glass-Ceramic NaI×Na<sub>3</sub>SbS<sub>4</sub> Superionic Conductors for All-Solid-State Na-Ion Batteries," J. Mater. Chem. A., vol. 6, pp. 17192–17200, Aug. 2018.
- [24] M. Tatsumisago, A. Hayashi, "Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries," J. Appl. Glass Sci., vol. 5, pp. 226–235, July 2014.
- [25] Q. Ma, C.-L. Tsai, X.-K. Wei, M. Heggen, F. Tietz, J. T. S. Irvine, "Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm<sup>-1</sup> and its primary applications in symmetric battery cells," J. Mater. Chem. A., vol. 7, pp. 7766–7776, Feb. 2019.
- [26] A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, "Superionic glassceramic electrolytes for room-temperature rechargeable sodium batteries," Nat. Commun., vol. 3, no. 8562012, May 2012.
- [27] R. C. Xu, X. H. Xia, Z. J. Yao, X. L. Wang, C. D. Gu, J. P. Tu, "Preparation of Li<sub>7</sub>P<sub>3</sub>S<sub>11</sub> glass-ceramic electrolyte by dissolutionevaporation method for all-solid-state lithium ion batteries," Electrochim. Acta, vol. 219, pp. 235–240, Nov. 2016.
- [28] W. D. Jung, J.-S. Kim, S. Choi, S. Kim, M. Jeon, H.-G. Jung, K. Y. Chung, J.-H. Lee, B.-K. Kim, J.-H. Lee, H. Kim, "Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth," Nano Lett., vol. 20, pp. 2303–2309, March 2020.
- [29] L. Zhou, A. Assoud, Q. Zhang, X. Wu, L. F. Nazar, "New Family of Argyrodite Thioantimonate Lithium Superionic Conductors," J. Am. Chem. Soc., vol.141, pp. 19002–19013, Oct. 2019.
- [30] H. Wang, C. Yu, S. Ganapathy, E. R. H. van Eck, L. van Eijck, M. Wagemaker, "A lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>Cl<sub>0.5</sub>Br<sub>0.5</sub> electrolyte with improved bulk and interfacial conductivity," J. Power Source., vol. 412, pp. 29–36, Feb. 2019.
- [31] H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zai
  β, M. Schlosser, "Li<sub>6</sub>PS<sub>5</sub>X: a class of crystalline Li-rich solids with an unusually high Li<sup>+</sup> mobility," Angew. Chem. Int. Ed., vol. 47, pp. 755–758, Jan. 2008.
- [32] W. F. Kuhs, R. Nitsche, K. Scheunemann, "The argyrodites a new family of the tetrahedrally close-packed srtuctures," Mater. Res. Bull., vol. 14, pp. 241–248, Feb. 1979.
- [33] T. Nilges, A. Pfitzner, "A structural differentiation of quaternary copper argirodites: Structure - property relations of high temperature ion conductors," Z. Kristallogr., vol. 220, pp. 281–294, March 2005.
- [34] M. E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, New Jersey: John Wiley & Sons, 2008, 525 p.
- [35] I.P. Studenyak, A.I.Pogodin, V.I.Studenyak, V.Yu.Izai, M.J.Filep, O.P.Kokhan, M.Kranjčec, P.Kúš, "Electrical properties of copperand silver-containing superionic (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>SiS<sub>5</sub>I mixed crystals with argyrodite structure," Solid State Ionic., vol. 345, no. 115183, Feb. 2020.
- [36] I.P. Studenyak, A.I. Pogodin, M.M. Luchynets, V.I. Studenyak, O.P. Kokhan, P. Kúš, "Impedance studies and electrical conductivity of (Cu<sub>1-x</sub>Ag<sub>x</sub>)<sub>7</sub>GeSe<sub>5</sub>I mixed crystals," J. Alloy. Compnd., vol. 817, no. 152792, March 2020.
- [37] A.K. Ivanov-Schitz, I.V. Murin, Solid State Ionic., vol. 1, S.-Petersburg: Univ. Press, 616 p., 2000 (in Russian).
- [38] R.A. Huggins, "Simple method to determine electronic and ionic components of the conductivity in mixed conductors a review," Ionics, vol. 8, pp. 300–313, May 2002.

### 02NEE03-4