НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ ІНСТИТУТ ЗАГАЛЬНОЇ ТА НЕОРГАНІЧНОЇ ХІМІЇ ім. В.І. ВЕРНАДСЬКОГО КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

УКРАЇНСЬКИЙ ХІМІЧНИЙ ЖУРНАЛ

Nº 2

Том 85 лютий 2019

Науковий журнал	Заснований в січні 1925 року	Виходить 6 разів на рік
-----------------	------------------------------	-------------------------

Зміст

Фізична хімія

НОВОСЕЛОВА І.А., КУЛЕШОВ С.В. Фізико-хімічні основи електролітичного синтезу вуглецевих наноматеріалів з сольових розплавів. Частина 1	69	
ЯПОНЦЕВА Ю.С., МАЛЬЦЕВА Т.В., КУБЛАНОВСЬКИЙ В.С. Особливості електроосад- ження сплава кобальт-вольфрам-реній	80	
ЧАБАН М.О., ДЗЯЗЬКО Ю.С., БИСТРИК О.В. Матеріали на основі оксидів титану і мангану для селективного вилучення літію з водних джерел	88	
БАРЧІЙ І.Є., ТОВТ В.О., П'ЯСЕЦКІ М., ФЕДОРЧУК А.О., ПОГОДІН А.І., ФІЛЕП М.Й., СТЕРЧО І.П. Квазіпотрійна система $Tl_2Se-TlInSe_2-Tl_4P_2Se_6$		
Правила для авторів	111	

Содержание

Физическая химия

СТЕРЧО И.П. Квазитройная система $Tl_2Se-TlInSe_2-Tl_4P_2Se_6$	101
и марганца для селективного извлечения лития из водных источников	88
японцева ю.с., мальцева т.в., кублановский в.с. Особенности электроосаж- дения сплава кобальт–вольфрам–рений	80
НОВОСЕЛОВА И.А., КУЛЕШОВ С.В. Физико-химические основы электролитического синтеза углеродных наноматериалов из солевых расплавов. Часть 1	69

© Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України, 2019

Contents

÷

Physical Chemistry

NOVOSELOVA I.A., KULESHOV S.V. Physico-chemical bases of electrolytic synthesis of carbon nanomaterials from molten salts. Part 1	69
YAPONTSEVA YU.S., MALTSEVA T.V., KUBLANOVSKY V.S. Peculiarities of electrode- position of cobalt–wolfram–renium alloy	80
CHABAN M.O., DZYAZKO Y.S., BYSTRYK O.V. Materials based on titanium and manga- nese oxides for selective recovery of lithium from water sources	88
BARCHIY I.E., TOVT V.A., PIASECKI M., FEDORCHUK A.A., POGODIN A.I., FILEP M.Y., STERCHO I.P. $Tl_2Se-TlInSe_2-Tl_4P_2Se_6$ quasiternary system	101
Rules for authors	111

УДК 54.01+546.683.1+546.682+546.18+546.23

doi: 10.33609/0041-0045.85.2.2019.101-110

І.Є.Барчій¹*, В.О.Товт¹, М.П'ясецкі², А.О.Федорчук³, А.І.Погодін¹, М.Й.Філеп¹, І.П.Стерчо¹

КВАЗІПОТРІЙНА СИСТЕМА Tl₂Se-TlInSe₂-Tl₄P₂Se₆

¹Ужгородський національний університет, вул.Підгірна, 46, Ужгород, 88000, Україна

² Ченстоховський університет імені Яна Длугоша, вул. Армії Крайової, 13/15,

Ченстохова, 42200, Польща

³ Львівський національний університет ветеринарної медицини та біотехнології,

вул. Пекарська, 50, Львів, 79010, Україна

* e-mail: i_<u>barchiy@ukr.net</u>

Вперше методами фізико-хімічного аналізу (ДТА, РФА, МСА) досліджено фазові рівноваги в квазіпотрійній системі $Tl_2Se-TllnSe_2-Tl_4P_2Se_6$, побудовано просторову діаграму стану, проекцію поверхні ліквідусу на концентраційний трикутник. Встановлено, що система характеризується евтектичним типом взаємодії з утворенням граничних твердих розчинів на основі вихідних компонентів. З кристалохімічних позицій розглянуто закономірності зміни типу хімічного зв'язку при переході від бінарного Tl_2Se до тернарних сполук $TlInSe_2$, $Tl_4P_2Se_6$ та механізму формування твердих розчинів.

Ключові слова: селенодифосфати, фазові рівноваги, діаграма стану, кристалічна структура, тверді розчини.

ВСТУП. Стрімкий розвиток електронної техніки потребує від науковців, які працюють в галузі неорганічного матеріалознавства, створення нових матеріалів з комплексом прогнозованих властивостей. Вирішення цих завдань базується на одержанні нових речовин шляхом цілеспрямованої зміни складу ізо- та гетеровалентним заміщенням складових структури, формування твердих розчинів, композитних евтектичних (перитектичних) з'єднань, удосконаленням технологічних режимів синтезу. Вивчення фізико-хімічної взаємодії багатокомпонентних систем дозволяє з наукових позицій встановити закономірності фазоутворення в залежності від складу та температури, визначити граничні концентраційні межі твердих розчинів, механізми їх утворення, знайти координати нон-, моноваріантних перетворень, підібрати раціональні склади вихідної ростової шихти і технологічні умови одержання якісних монокристалів, розглянути закономірності склад кристалічна будова — властивості.

талійвмісні селеніди типу $Tl_4B^{IV}Se_3$, $TlB^{III,V}Se_2$, $Tl_9B^VSe_6$ ($B^{III} - In$, $B^{IV} - Ge$, Sn, Pb, $B^V - Sb$, Bi), знайшли широке практичне використання в якості робочих елементів у приладах для оптоелектроніки, фотоелектроніки, термоелектрики [1-5]. Сполуки типу $M_2P_2Se_6$ (M - Ag, Cu), похідні від $Sn_2P_2S_6$ [6], завдяки своїй кристалічній структурі володіють перспективними сегнетоелектричними, п'єзоелектричними, електрооптичними властивостями [7–13]. Гетеровалентне заміщення катіонів $2M^{2+}$ у складі сполук $M_2P_2Se_6$ на чотири $4M^{1+}$ повинне приводити до деформації кристалічної структури, зміни величини дипольного моменту і, відповідно, електрофізичних властивостей.

З огляду на наведене вище, дослідження фазових рівноваг у квазіпотрійній системі Tl_2Se – $TlInSe_2$ – $Tl_4P_2Se_6$ (вторинна від загальної системи Tl_2Se – In_2Se_3 –" P_2Se_4 "), вивчення характеру процесів фізико-хімічної взаємодії, кристалоструктурних особливостей проміжних сполук є актуальним як з теоретичної точки зору, так і стосовно практичного використання.

Складні халькогенідні матеріали, зокрема

© І.Є.Барчій, В.О.Товт, М.П'ясецкі, А.О.Федорчук, А.І.Погодін, М.Й.Філеп, І.П.Стерчо, 2019

Система Tl₂Se-In₂Se₃-"P₂Se₄" характеризується утворенням проміжних сполук: TlInSe₂ плавиться конгруентно при 1023 К, TlIn₅Se₈ утворюється за перитектичною реакцією L+ $+In_2Se_3 \leftrightarrow TIIn_5Se_8$ при 1029 К (система Tl₂Se $-In_2Se_3$) [14], $Tl_4P_2Se_6$ з конгруентним характером плавлення при 758 К (Tl₂Se-"P₂Se₄"), In₄(P₂Se₆)₃ утворюється за синтектичною реакцією L1+L2 ↔ In₄(P₂Se₆)₃ при 880 К (In₂Se₃) -"P₂Se₄") [15], TlInP₂Se₆ формується на перетині перерізів Tl₄P₂Se₆-In₄(P₂Se₆)₃ та TlInSe -"P₂Se₄". Тріангуляція системи Tl₂Se-In₂Se₃ -"P₂Se₄" [16] показала, що вона поділяється квазібінарними перерізами In₂Se₃-TlInP₂Se₆, TIInSe₂-Tl₄P₂Se₆, TIInP₂Se₆-Tl₄P₂Se₆, TIInSe₂ -TlInP₂Se₆, TlInP₂Se₆-In₄(P₂Se₆)₃ та TlInP₂Se₆ -"P₂Se₄" на шість вторинних квазіпотрійних підсистем, серед яких квазіпотрійна система Tl₂Se-TlInSe₂-Tl₄P₂Se₆ є предметом нашого дослідження.

ЕКСПЕРИМЕНТ ТА ОБГОВОРЕННЯ РЕЗУ-*ЛЬТАТІВ*. Вихідні тернарні сполуки TlInSe₂, Tl₄P₂Se₆ одержували прямим однотемпературним методом шляхом сплавлення стехіометричних кількостей попередньо синтезованого талій (I) селеніду з елементарними індієм, фосфором та селеном у вакуумованих до 0.13 Па кварцових ампулах. Використовували елементарні компоненти високого ступеня чистоти (не менше 99.99%): талій марки ТІ-000, індій ос.ч. In-7N, фосфор ос.ч. 9-3, селен ос.ч. 17-3. Максимальна температура синтезу становила: для TlInSe₂ — 1073, Tl₄P₂Se₆ — 853 К, витримка при максимальних температурах — 72 години. Лінійність процесів нагрівання та охолодження (швидкість 50 К/год) контролювали програмованим пристроєм РІФ-101. Для вивчення фазових рівноваг у квазіпотрійній системі Tl₂Se-TlInSe₂-Tl₄P₂Se₆ з вихідних сполук було синтезовано 26 подвійних та потрійних сплавів, склад яких підбирався для встановлення координат нонваріантних процесів, границь взаємної розчинності компонентів та проведення математичного моделювання фізико-хімічної взаємодії. Максимальна температура синтезу та час витримки сплавів становили відповідно 1073 К та 48 годин, швидкість нагрівання та

охолодження 250 К/год. Для приведення сплавів у рівноважний стан при 573 К проводили гомогенізуючий відпал протягом 336 годин з наступним загартуванням у "льодяній воді".

Ідентифікацію складних сполук та дослідження сплавів системи здійснювали методами диференціального термічного (ДТА) (хромельалюмелева термопара, точність визначення 5 К, автоматична фіксація процесів на комп'ютері), рентгенівських фазового (РФА) (ДРОН-3, ДРОН 4-13, Си K_{α} , Ni-фільтр) та структурного (PCA) (Guinier Huber G670 за методом Гінь ϵ на проходження випромінювання Cu $K_{\alpha 1}$), мікроструктурного (МСА) (металургійний мікроскоп Lomo Metam R-1) аналізів. При встановленні фазового складу сплавів використовували комплекс програм Powder Cell 2.1, кристалохімічних розрахунків — WinCSD [17]. Для математичної побудови проекції поверхні ліквідусу моделювали фізико-хімічну взаємодію у багатокомпонентних системах за симплексним методом [18, 19].

На основі результатів ДТА, РФА, МСА, математичного моделювання та термічних досліджень [14, 20] вперше побудовані просторова діаграма стану квазіпотрійної системи Tl₂Se-TlInSe₂ $-Tl_4P_2Se_6$ (рис. 1), проекція ліквідусу на концентраційний трикутник (рис. 2). Температури конгруентного плавлення сполук складають Tl₂Se (655 K), TlInSe₂ (1029 K), Tl₄P₂Se₆ (789 К), відповідають вершинам тригональної призми A, B, C. Для сполуки Tl₄P₂Se₆, вище за температури гомогенізуючого відпалу 573 К, зафіксовані поліморфні перетворення при 689 К (С") та 772 К (С). Сторони квазіпотрійної системи Tl₂Se-TlInSe₂-Tl₄P₂Se₆ утворюють три системи евтектичного типу з формуванням граничних твердих розчинів на основі складних селенідів: α – на основі Tl₂Se, β – TlInSe₂, γ , δ , ε — на основі *ltm*-, *mtm*- та *htm*-Tl₄P₂Se₆ (де *ltm-, mtm-* та *htm-* відповідно низько-, середньо- та високотемпературні модифікації). В системі Tl₂Se-TlInSe₂ відбувається бінарний нонваріантний евтектичний процес $L \leftrightarrow Tl_2Se +$ + TlInSe₂ (e1 – 614 K) [17]; у системі Tl₂Se– $Tl_4P_2Se_6$ (часткова від $Tl_2Se_4"$) — нонваріантний евтектичний процес $L \leftrightarrow Tl_2Se +$

Рис. 1. Просторова діаграма стану квазіпотрійної системи Tl_2Se — $TlInSe_2$ — $Tl_4P_2Se_6$.

 $ltmTl_4P_2Se_6$ (e2 - 610 K), метатектичний процес $htmTl_4P_2Se_6 \leftrightarrow L + mtmTl_4P_2Se_6$ (m2 - 47 K), метатектичний процес $mtmTl_4P_2Se_6 \leftrightarrow L + ltmTl_4P_2Se_6$ (m1 - 40 K); у системі TllnSe₂—Tl₄P₂Se₆ (квазібнарний переріз загальної трикомпонентної системи Tl₂Se–In₂Se₃-"P₂Se₄") — нонваріантний евтектичний процес L $\leftrightarrow htmTl_4P_2Se_6$ + TllnSe₂ (e5 - 776 K) [20].

Ліквідус системи Tl₂Se-TlInSe₂ -Tl₄P₂Se₆ (рис. 2) утворюють поля первинних кристалізацій α-фази $Tl_2Se-e1-E1-e2-Tl_2Se$, β-фази $TlInSe_2$ e5-U2-U1-E1-TlInSe2, ү-фази m1-U1-*Е1-е2-т1*, б-фази *m2-U2-U1-т1-т2*, ϵ -фази $Tl_4P_2Se_6-e_5-U_2-m_2-Tl_4P_2Se_6$. Площина *alblc1* відповідає нонваріантному евтектичному перетворенню $LTl_2Se + TlInSe_2 + ltmTl_4P_2Se_6$ (539 К). Дві поверхні характеризуються проходженням перитектичних процесів на основі поліморфних перетворень тернарної сполуки $Tl_4P_2Se_6 - U2b3c3U2 (L+htmTl_4 P_2Se_6 \leftrightarrow mtmTl_4P_2Se_6 + TlInSe_2, 693$ K) ta U1b2c2U1 (L + $mtmTl_4P_2Se_6 \leftrightarrow$

ltmTl₄P₂Se₆ + TlInSe₂, 620 K). Система Tl₂Se -TlInSe₂—Tl₄P₂Se₆ характеризується проходженням моноваріантних евтектичних процесів: $L \leftrightarrow htmTl_4P_2Se_6 + TlInSe_2$ (e5-U2, 776-693 K), $L \leftrightarrow Tl_2Se + TlInSe_2$ (*el-E1*, 614–539 K), $L \leftrightarrow Tl_2Se + ltm Tl_4P_2Se_6$ (e2-E1, 610–539 K); моноваріантних перитектичних процесів: L+ + $mtmTl_4$ - P₂Se₆ $\leftrightarrow ltmTl_4$ P₂Se₆ (m1-U1, 640 $L + htmTl_4P_2Se_6 \leftrightarrow mtmTl_4P_2Se_6$ -620 K), (*m2-U2*, 747–693 K), $L + mtmTl_4P_2Se_6 \leftrightarrow$ TlInSe₂ (U2-U1, 693–620 K), L + ltmTl₄P₂Se₆ \leftrightarrow TlInSe₂ (*U1-E1*, 620–539 К). Лінії моноваріантних рівноваг перетинаються в трьох точках: U2 — нонваріантний перитектичний процес $L + htmTl_4P_2Se_6 \leftrightarrow TlInSe_2 + mtm$ -Tl₄P₂Se₆ (12 % мол. Tl₂Se, 20 % мол. TlInSe₂, 68 % мол. Tl₄P₂Se₆, 693 К), U1 — нонваріантний перитектичний процес $L + mtmTl_4P_2Se_6$ \leftrightarrow TlInSe₂ + *ltm*Tl₄P₂Se₆ (38 % мол. Tl₂Se, 9% мол. TlInSe₂, 53% мол. Tl₄P₂Se₆, 620 K), E1 — нонваріантний евтектичний процес $L \leftrightarrow$ $Tl_2Se + TlInSe_2 + ltmTl_4P_2Se_6$ (47 % мол. Tl_2Se_7 7 % мол. TlInSe₂, 46 % мол. Tl₄P₂Se₆, 539 K).

Рис. 2. Проекція поверхні ліквідусу на концентраційний трикутник квазіпотрійної системи Tl₂Se—TlInSe₂—Tl₄P₂Se₆.

ISSN 0041-6045. УКР. XIМ. ЖУРН., 2019, т. 85, № 2

Таблиця 1 Кристалохімічні параметри сполук Tl ₂ Se, TlInSe ₂ , Tl ₄ P ₂ Se ₆		
Сполука	Сингонія, пр.гр.	Параметри кристалічної гратки
Tl ₂ Se [23]	Тетрагональна, P4/n	a = 8.5400; c = 12.3800 Å
TlInSe ₂ [20]	Моноклінна, <i>P</i> 12 ₁ / <i>c</i> 1	a = 12.239(2), b = 9.055(2), c = 12.328(2) Å, $\beta = 98.83(1)$
$Tl_4P_2Se_6[24]$	Тетрагональна, <i>I4/mcm</i>	a = 8.06413(4), c = 6.83310(4) Å

Кристалоструктурні дослідження складних селенідів TlInSe₂, $Tl_4P_2Se_6$ проводили методом порошку. Уточнення структурних параметрів здійснювали методом Рітвельда, шляхом порівняння теоретично розрахованого профілю дифрактограми з експериментальним (табл. 1). В якості вихідної моделі для сполуки $Tl_4P_2Se_6$ використовували модель, взяту з роботи [21], для сполуки TlInSe₂ розрахунки

Рис. 3. Укладання октаедрів [TlSe₆], координаційне оточення атомів талію у структурі сполуки Tl₂Se та міжатомні відстані Tl—Se [23].

Рис. 4. Укладання тетраедрів $[InSe_4]$, тетрагональних антипризм $[TISe_8]$ у структурі сполуки $TIInSe_2$ та міжатомні відстані TI—Se, In—Se [20].

Утворення нових складних сполук в системі не виявлено. Найбільш протяжні області гомогенності встановлено для сполук TlInSe₂ та $Tl_4P_2Se_6$ (5–8% мол.).

проводили у наближенні до структурного типу TlGaTe₂ [22].

У структурі Tl_2Se (структурний тип Tl_5Se_3) можна виділити два сорти атомів талію (рис. 3). Катіонну підгратку утворюють іони $Tl11^+$ та $Tl12^+$, які координують навколо себе іони Se^{2-} (розташовані відповідно у вершинах сильно деформованого та дефектного –1 октаедрів). $Tl21^+$ та $Tl22^+$ виступають в якості центрального аніоноутворюючого атома і розташовуються всередині октаедрів [$TlSe_6$].

Структуру сполуки TlInSe₂ можна розглядати як похідну структури бінарного TlSe, в якій шляхом ізовалентного заміщення іони In³⁺ займають позиції Tl³⁺ у центрах тетраедрів з іонів Se²⁻ (рис. 4). Катіони Tl⁺ координують навколо себе вісьмома зв'язками з Se²⁻ аніонні групи [InSe₄]⁵⁻.

ISSN 0041-6045. УКР. XIM. ЖУРН., 2019, т. 85, № 2

Квазіпотрійна система $Tl_2Se-TlInSe_2-Tl_4P_2Se_6$

Рис. 5. Укладання зрощених тетраедрів аніонної групи [P₂Se₆] у структурі сполуки Tl₄P₂Se₆ та міжатомні відстані Tl—Se [24].

Кристалічна структура $Tl_4P_2Se_6$ формується атомами аніонної групи $[P_2Se_6]^{4-}$, між якими у тетраедричних пустотах розташовані катіони Tl^+ (рис. 5). Аніонна група $[P_2Se_6]^{4-}$ утворюється парою атомів Р—Р, кожний з яких зв'язаний з трьома іонами Se²⁻ (розташовуються у вершинах зрощених тетраедрів).

Кристалохімічні дослідження дозволили дати оцінку типу хімічного зв'язку у складних селенідах шляхом співставлення розрахункових та експериментальних значень міжатомних відстаней (табл. 2). Аналіз результатів вказує на те, що для бінарного талій (І) селеніду характерний змішаний тип хімічного зв'язку — іонно-ковалентний. Довжина зв'язку Tl–Se наближається до суми іонних радіусів Tl⁺ і Se²⁻, що свідчить про перевагу іонної складової.

При переході від бінарного Tl_2Se до тернарної сполуки $Tl_4P_2Se_6$, завдяки транс-впливу у системі зв'язків Tl–Se–P, збільшується поляризація зв'язків Tl–Se, що вказує на зростання вкладу іонної складової хімічного зв'язку. Протилежна картина спостерігається для зв'язків In–Se у сполуці TlInSe₂, поляризація яких

і атомних відстаней у складних селенідах Tl₂Se, – TlInSe₂, Tl₄P₂Se₆

Таблиця 2

Сполука	Tl—Se	In—Se	P—Se
Експериментальні відстані, А			
Tl ₂ Se	3.11-3.82		
TlInSe ₂	3.43	2.62	
Tl ₄ P ₂ Se ₆	2.98-3.98		2.10-2.25
Ро	эзрахункові в	ідстані, А [2	5]
$\sum r_{\kappa \rho \rho}$	2.64	2.60	2.22
$\sum r_{ioh}$	3.38	2.72	2.35

Розрахункові та експериментальні значення між-

Приміт ка. Міжатомні відстані представлені між катіонами Tl⁺, In³⁺ та Se²⁻ аніонних груп. $\Sigma r_{\kappa o \kappa}$ і $\Sigma r_{io \mu}$ — відповідно сума ковалентних та іонних радіусів для кристалів.

зменшується (для бінарного In₂Se₃ зв'язок In–Se складає 2.75–3.52 Å), що приводить до підвищення вкладу ковалентної складової.

Таблиця	3	
Розрахунок	кристалохімічних формульних складів сі	юлук
$TIInSe_2, TI_4I$	Р ₂ Se ₆ і твердих розчинів на її основі	

Фаза	Кристалохімічний склад
$(Tl_4P_2Se_6)_{0.95}(Tl_2Se)_{0.05}$	$ \begin{array}{c} \text{Tl}_{3900}[\text{P}_2\text{Se}_6]_{950}[\]_{100} \leftrightarrow \\ \text{Tl}_{3900}\text{P}_{1900}\text{Se}_{5700}[\]_{100} \end{array} $
Стехіометрія $Tl_4P_2Se_6$	
$(Tl_4P_2Se_6)_{0.95}(TlInSe_2)_{0.05}$	$ \overset{\text{Tl}_{3850}\text{In}_{50}[\text{P}_{2}\text{Se}_{6}]_{950}\text{Se}_{100}}{\text{Tl}_{3850}\text{In}_{50}\text{P}_{1900}\text{Se}_{5800}} \leftrightarrow $
$(TIInSe_2)_{0.95}(Tl_4P_2Se_6)_{0.05}$	Tl ₅₂₃ In ₄₃₂ P ₄₅ Se ₁₀₀₀
Стехіометрія TlInSe ₂	Tl ₅₀₀ In ₅₀₀ Se ₁₀₀₀
$(TIInSe)_{0.95}(Tl_2Se)_{0.05}$	$Tl_{525}In_{475}Se_{975}[]_{25}$

Розглянемо механізм утворення твердих розчинів на основі сполук TlInSe₂, Tl₄P₂Se₆ з позицій кристалохімічних формульних складів [26].

Для сполуки TlInSe₂ стехіометричного складу кристалохімічна формула відповідає $Tl_{500}In_{500}Se_{1000}$. Ha 1000 атомів (500 ат. Tl + 500ат. In), які формують катіонну підгратку, припадають 1000 ат. Se в аніонній підгратці (табл. 3). При розчиненні 5 % мол. Tl₂Se у матричній структурі TlInSe₂ одержано склад твердого розчину, який описується кристалохімічною формулою Tl₅₂₅In₄₇₅Se₉₇₅[]₂₅. У катіонній підгратці завдяки ізовалентній заміні In³⁺ на 3Tl⁺ загальне число атомів залишається сталим (525 ат. Tl+475 ат. In). В аніонній підгратці число атомів Se менше, ніж для стехіометричного складу, що вказує на утворення вакансій. Твердий розчин утворюється за механізмом заміщення у катіонній підгратці та віднімання у аніонній підгратці. Кристалохімічний склад твердого розчину (TlInSe₂)_{0.95}(Tl₄P₂Se₆)_{0.05} описується формулою Tl₅₂₃In₄₃₂P₄₅Se₁₀₀₀. Число атомів у катіонній та аніонній підгратках залишається сталим, що вказує на формування твердого розчину за механізмом заміщення $(In^{3+} + 3Tl^{+}P^{4+}).$

Стехіометричному складу сполуки $Tl_4P_2Se_6$ відповідає кристалохімічна формула $Tl_{4000}[P_2-Se_6]_{1000}$ ($Tl_{4000}P_{2000}Se_{6000}$), де на 4000 атомів Tl та 2000 атомів P (катіонна підгратка) припадає 6000 атомів Se (утворюють 1000 аніонних груп [P₂Se₆]). При розчиненні 5 % мол. Tl₂Se у матричній структурі Tl₄P₂Se₆ одержуємо склад твердого розчину, який описується кристалохімічною формулою Tl₃₉₀₀P₁₉₀₀Se₅₇₀₀[]₁₀₀, де на 5800 іонів Tl⁺ + P⁴⁺ катіонної підгратки припадає 5700 іонів Se²⁻ (утворюють 950 аніонних груп [P₂Se₆]), що приводить до утворення в аніонній підгратці вакансій, і, відповідно, структури віднімання. При розчиненні 5 % мол. TlInSe₂ кристалохімічний склад твердого розчину (Tl₄P₂Se₆)_{0.95}(TlInSe₂)_{0.05} описується формулою Tl₃₈₅₀In₅₀P₁₉₀₀Se₅₈₀₀

(Tl₃₈₅₀In₅₀[P₂Se₆]₉₅₀Se₁₀₀). За рахунок гетеровалентного заміщення Tl⁺ \leftrightarrow In³⁺ та заповнення утворених 50 вакансій по аніонній групі [P₂Se₆]⁴⁻ іонами Se²⁻ формування твердого розчину відбувається за механізмом заміщення як в катіонній, так і аніонній підгратках.

ВИСНОВКИ. За результатами ДТА, РФА, МСА та математичного моделювання вивчено характер фізико-хімічної взаємодії у квазіпотрійній системі Tl₂Se-TlInSe₂-Tl₄P₂Se₆, побудовано просторову діаграму стану та проекцію поверхні ліквідусу на концентраційний трикутник. Встановлено, що в системі відбуваються нонваріантні процеси: евтектичний E1 — $L \leftrightarrow Tl_2Se + TlInSe_2 + ltmTl_4P_2Se_6$ (47 % мол. Tl₂Se, 7 % мол. TlInSe₂, 46 % мол. Tl₄P₂Se₆, 539 К), перитектичний U1 — L + $mtmTl_4P_2Se_6 \leftrightarrow$ TlInSe₂ + *ltm*Tl₄P₂Se₆ (38 % мол. Tl₂Se, 9 % мол. TlInSe₂, 53 % мол. Tl₄P₂Se₆, 620 K), U2 — перитектичний $L + htmTl_4P_2Se_6 \leftrightarrow TlInSe_2 +$ *mtm*Tl₄P₂Se₆ (12 % мол. Tl₂Se, 20 % мол. TlInSe₂, 68 % мол. Tl₄P₂Se₆, 693 К). В системі утворюються граничні тверді розчини на основі вихідних компонентів (до 5-8 % мол.). Формування нових сполук не зафіксовано. Кристалохімічний аналіз сполук Tl₂Se, TlInSe₂, Tl₄P₂Se₆ показав, що вони характеризуються змішаним іонно-ковалентним типом хімічного зв'язку. При переході від бінарного Tl₂Se до тернарної сполук TllnSe₂ відбувається посилення ковалентної складової зв'язку In–Se, до $Tl_4P_2Se_6$ — спостерігається протилежна зміна, зростання іонної компоненти зв'язку Tl–Se. Результати досліджень механізмів формування твердих розчинів з позицій кристалохімічних формульних складів вказують на утворення структур заміщення при взаємній розчинності тернарних сполук TlInSe₂, $Tl_4P_2Se_6$. Розчинення бінарного Tl_2Se у тернарних селенідах приводить до формування твердих розчинів за механізмом заміщення та віднімання.

КВАЗИТРОЙНАЯ СИСТЕМА $Tl_2Se-TlInSe_2-Tl_4P_2Se_6$ И.Е.Барчий¹*, В.А.Товт¹, М.Пясецки², А.А.Федорчук³, А.И.Погодин¹, М.И.Филеп¹, И.П.Стерчо¹

¹ Ужгородский национальный университет, ул. Пидгирна, 46, Ужгород, 88000, Украина ² Ченстоховский университет имени Яна Длугоша, ул. Армии Крайовой, 13/15, Ченстохова, 42200, Польша

³ Львовский национальный университет ветеринарной медицины и биотехнологии, ул.Пекарска, 50, Львов, 79010, Украина * e-mail: i_barchiy@ukr.net

Классическими методами физико-химического анализа (ДТА, РФА, МСА) и математического моделирования впервые изучены фазовые равновесия в квазитройной системе Tl₂Se-TlInSe₂-Tl₄P₂Se₆, построена пространственная диаграмма состояния, проекция поверхности ликвидуса на концентрационный треугольник, установлен характер и координаты нонвариантных процессов. Показано, что система характеризируется эвтектическим типом взаимодействия с образованием граничных твердых растворов на основе исходных соединений. С кристаллохимических позиций рассмотрены закономерности изменения типа химической связи при переходе от Tl₂Se к тройным соединениям TlInSe₂ и Tl₄P₂Se₆, механизма образования твердых растворов.

К л ю ч е в ы е с л о в а: селенодифосфаты, фазовые равновесия, диаграмма состояния, кристаллическая структура, твердые растворы.

Tl₂Se–TlInSe₂–Tl₄P₂Se₆ QUASITERNARY SYSTEM I.E.Barchiy¹, V.A.Tovt¹, M.Piasecki², A.A.Fedorchuk³, A.I.Pogodin¹, M.Y.Filep¹, I.P.Stercho¹ ¹ Uzhhorod National University, 46 Pidgirna Str., Uzhgorod, 88000, Ukraine ² J.Dlugosz University, 13/15 Armii Krajowej Str., Çzestochowa, 42200, Poland ³ Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Str., Lviv, 79010, Ukraine * e-mail: i_barchiy@ukr.net

Complex chalcogenide compound are widely used as working elements for semiconductor optical technology, thermal generation, solar power. Special attention is paid to compounds of the M₂P₂Se₆ type (M – Ag, Cu) which due to its layer crystal structure possess promising ferroelectric, thermoelectric and electro-optical properties. Heterovalent substitutions of cations $2M^{2+} \leftrightarrow 4M^{1+}$ in the composition of M₂P₂Se₆ type compounds must leads to deformation of the crystal structure, changing in the value of the dipole moment and, accordingly, to change the electro-physical properties.

The Tl₂Se–In₂Se₃–"P₂Se₄" system characterized by the formation of intermediate complex compounds which melts congruently TlInSe₂ (1023 K), Tl₄P₂Se₆ (758 K), TlInP₂Se₆ (875 K) and TlIn₅Se₈ (melts incongruently L + In₂Se₃TlIn₅Se₈ at 1029 K), In₄(P₂Se₆)₃ (formed by syntactic reaction at 880 K). Triangulation of the Tl₂Se–In₂Se₃–"P₂Se₄" system was shown that then divided on secondary quasiternary systems, one of them is Tl₂Se–TlInSe₂–TlI₄P₂Se₆.

Phase equilibria in the $\tilde{T}l_2Se-TIIn\tilde{S}e_2-TI_4P_2Se_6$ quasiternary system were studied using classical methods of physicochemical analysis DTA (chromelalumel thermocouple, with an accuracy of 5 K), XRD (DRON-4-13 diffractometer, Cu K_{α} radiation, Ni filter, Guinier Huber G670 diffractometer, Cu $K_{\alpha 1}$ radiation), MSA (metallographic microscope Lomo Metam R1) in combination with the simplex method of mathematical modeling of phase equilibria in multi-component systems. Crystal structure calculation was carried out with program WinCSD.

Investigation of physical-chemical interaction allowed to constructed perspective view of phase state diagram and liquidus surface projection of the Tl₂Se–TlInSe₂–Tl₄P₂Se₆ ternary system. In the ternary system formed the boundary solid solution: α – on the basis of Tl₂Se, β – on the basis of TlInSe₂, γ , δ , ϵ – on the basis of *ltm-*, *mtm-* and *htm-*Tl₄P₂Se₆ (*ltm-*, *mtm-*, *htm* – low, middle and high temperature modification, respectively). The liquidus of the ternary system consists of primary crystallization areas: Tl₂Se-e1-E1-e2-Tl₂Se (α phase), TlInSe₂-e3-U2-U1-E1-TlInSe₂ (β phase), m1-U1-E1-e2-m1 (γ phase), m2-U2-U1-m1-m2 (δ phase) and Tl₄P₂Se₆-e5-U2-m2-Tl₄P₂Se₆ (ϵ phase). The Tl₂Se–TlInSe₂–

Tl₄P₂Se₆ quasiternary system is characterized by the pro- cesses: monovariant eutectic L \leftrightarrow htmTl₄P₂Se₆ + + TlInSe₂ (e5-U2, 776–693 K), monovariant eutectic $L \leftrightarrow Tl_2Se + TlInSe_2$ (e1-E1, 614–539 K), monova-riant eutectic $L \leftrightarrow Tl_2Se + ltmTl_4P_2Se_6$ (e2-E1, 610– 539 K); monovariant peritectic $L + mtmTl_4P_2Se_6$ \leftrightarrow *ltm*Tl₄P₂Se₆ (m1-U1, 640–620 K); monovariant peritectic $L + htmTl_4P_2Se_6 \leftrightarrow mtmTl_4P_2Se_6$ (m2-U2, 747–693 K); monovariant peritectic L + mtm- $Tl_4P_2Se_6 \leftrightarrow TlInSe_2$ (U2-U1, 693–620 K); monovariant peritectic $L + ltmTl_4P_2Se_6 \leftrightarrow TlInSe_2$ (U1-E1, 620–539 K). Lines of the monovariant equilibria are crossed in three point: U2 - invariant peritectic process $L + htmTl_4P_2Se_6 \leftrightarrow TlInSe_2 + mtmTl_4P_2Se_6$ (12 % mol. Tl_2Se, 20 % mol. TlInSe_2, 68 % mol. $Tl_4P_2Se_6$, 693 K), U1— invariant peritectic process $L + mtmTl_4P_2Se_6 \leftrightarrow TlInSe_2 + ltmTl_4P_2Se_6$ (38%) mol. Tl₂Se, $\bar{9}$ % mol. TlInSe₂, 53 % mol. Tl₄P₂Se₆, 620 K), E1 — invariant eutectic process $L \leftrightarrow Tl_2Se +$ TlInSe₂ + ltmTl₄P₂Se₆ (47 % mol. Tl₂Se, 7 % mol. TlInSe₂, 46 % mol. Tl₄P₂Se₆, 539 K). New complex compounds were not observed in the ternary system. Limited solid solutions on the basis of TlInSe₂, $Tl_4P_2Se_6$ initial compounds are not up to 5–8 % mol.

Crystal-structure studies of Tl₂Se, TlInSe₂ and Tl₄P₂Se₆ complex chalcogenides were carried out by a powder method, refinement of the structural parameters — by the Rietveld method. The lattice parameters are: $Tl_2Se - P4/n$, a = 8.540, c = 12.380 Å; $TlInSe_2 - P4/n$ I4/mcm, a = 8.064, c = 6.833 A, $Tl_4P_2Se_6 - P121/c1$, a = 12.239, b = 9.055, c = 12.328 A, $\beta = 98.83$. Crystal-chemical analysis of the compounds showed that they are characterized by a mixed ion-covalent type of chemical bond. During the transition from the binary Tl₂Se to TlInSe₂ ternary compound the covalent component of the In-Se bond is enhanced, the opposite change is observed for Tl₄P₂Se₆, an increase in the ion component of the Tl-Se bond. The study of the mechanisms of formation of solid solutions showed that with the reciprocal solubility of the TlInSe₂, Tl₄P₂Se₆ ternary compounds characterized by the formation of substitution structure, the dissolution of Tl₂Se in ternary selenides follows the substitution and subtraction mechanism.

K e y w o r d s: selenodiphosphate, phase diagrams, state diagrams, crystal structure, solid solutions.

ЛІТЕРАТУРА

 Kanadzidis M.G. The Role of Solid State Chemistry in the Discovery of New Thermoelectric Materials // Semiconductors and Semimetals / Ed. Terry M. Tritt. -San Diego, San Francisco, N.Y.: Academ. Press, 2001.

- 2. Шевельков А.В. Химический аспект в создании термоэлектрических материалов // Успехи химии. -2008. -77. -С. 3–21.
- McGuire M.A., Reynolds T.K., DiSalvo F.J. Exploring Thallium Compounds as Thermoelectric Materials: Seventeen New Thallium Chalcogenides // Chem. Mater. -2005. -17. -P. 2875–2884. DOI: 10.1021/cm050412c.
- Barchij I.E., Sabov M.Yu, El-Naggar A.M. et al. Tl₄SnS₃, Tl₄SnSe₃ and Tl₄SnTe₃ crystals as novel IR induced potoelectronic materials // J. Mater. Sci.: Mater. Electron. -2016. -27. -P. 3901–3905. DOI: 10.1007/s10854-015-4240-4.
- Reshak A.H., Alahmed Z.A., Barchij I. et al. The influence of replacing Se by Te on electronic structure and optical properties of Tl₄PbX₃ (X = Se or Te): Experimental and Theoretical investigations // RSC Adv. -2015. -5. -P. 1–9. DOI: 0.1039/C5RA20956K.
- Israel R., De Gelder R., Smits J.M.M. et al. Crystal structures of di-tin-hexa(seleno)hypodiphosphate, Sn₂P₂Se₆, in the ferroelectric and paraelectric phase. // Z. Kristallogr. -1998. -213. -P. 34–41. DOI: <u>https://doi.org/10.1524/zkri.1998</u>. 213.1.34.
- Kanatzidis M.G. New directions in synthetic solid state chemistry: chalcophosphate salt fluxes for discovery of new multinary solids // Solid State Mat. Sci. -1997. -2. -P. 139, 149. DOI: <u>https://doi.org/10.1016/S1359-0286(97)80058-7.</u>
- Chung I., Karst A.L., Weliky D.P., Kanatzidis M.G. [P₆Se₁₂]⁴⁻: A Phosphorus-Rich Selenophosphate with Low-Valent P Centers // Inorg. Chem. -2006. -45. -P. 2785–2787. DOI: 10.1021/ ic0601135.
- Galdamez A., Manriquez V., Kasaneva J., Avila R.E. Synthesis, characterization and electrical properties of quaternary selenodiphosphates: AMP₂Se₆ with A = Cu, Ag and M = Bi, Sb // Mat. Res. Bull. -2003. -38. -P. 1063–1072. DOI: 10.1016/S0025-5408(03)00068-0.
- Pfeiff R., Kniep R. Quaternary selenodiphosphates (IV): M(I)M(III)[P₂Se₆], (M(I) = Cu, Ag; M(III) = Cr, Al, Ga, In) // J. Alloys Comp. -1992.
 -186. -P. 111–133. DOI: <u>https://doi.org/10.1016/</u>0925-8388(92)90626-K.
- 11. Gave M.A., Bilc D., Mahanti S.D. et al. On the lamellar compounds CuBiP₂Se₆, AgBiP₂Se₆ and AgBiP₂S₆. antiferroelectric phase transitions due to cooperative Cu⁺ and Bi³⁺ ion motion // Inorg. Chem. -2005. -44. -P. 5293–5303. DOI: 10.1021/ ic050357+.
- 12. Cajipe V.B., Ravez J., Maisonneuve V. et al. Cupper ordering in lamellar $CuMP_2S_6$ (M = Cr, In) Transition to an antiferielectric or ferielectric

ISSN 0041-6045. УКР. XIM. ЖУРН., 2019, т. 85, № 2

phase // Ferroelectrics. -1996. -185. -P. 135–138. DOI: <u>https://doi.org/10.1080/00150199608210497</u>.

- Bourdon X., Maisonneuve V., Cajipe V.B. et al. Cupper sublattice ordering in layered CuMP₂S₆ (M = Cr, In) // J. Alloys Comp. -1999. -283. -P. 122–127. DOI: <u>https://doi.org/10.1016/S0925-8388(98)00899-8</u>.
- Mucha I. Phase diagram for the quasi-binary thallium (I) selenide-indium (III) selenide system // Thermochim. Acta. -2012. -550. -P. 1–4. DOI: 10.1016/j.tca.2012.09.028.
- 15. Voroshilov Y.V., Gebesh V.Y., Potorii M.V. Phase equilibria in the system In–P–Se and crystal structure of β -In₄(P₂Se₆)₃ // Inorg. Mater. -1991. -27. -P. 2141–2144.
- 16. Товт В.О., Барчій І.С., П'ясецкі М. та ін. Тріангуляція квазіпотрійної системи Tl₂Se-In₂Se₃—"P₂Se₄" // Наук. вісн. Ужгород. ун-ту. Сер. Хімія. -2016. -2 (36). -С. 14–17.
- Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Ver. 4) // J. Appl. Crystallogr. -2014. -47. -P. 803–805. DOI: 10.1107/S1600576714001058.
- Барчій І.Е. Математичне моделювання фазових рівноваг у квазітернарній системі Tl₂S— Tl₂Se—Tl₅Se₂I // Укр. хим. журн. -2001. -67 (11). -C. 18–23.
- Barchiy I.E., Tatzkar A.R., Fedorchuk A.O., Plucinski K. // J. Alloys Comp. -2016. -671. -P. 109–113. DOI: https:// doi.org/10.1016j.jallcom. 2016.02.078.
- Товт В.О., Барчій І.Є., Федорчук А.О. та ін. Взаємодія в системі TllnSe₂—Tl₄P₂Se₆ // Наук. вісн. Ужгород. ун-ту. Сер. Хімія. -2017. -1(37). -C. 55–58.
- Brockner W., Ohse L., Patzmann U. et al. Kristallstruktur und Schwingungsspektrum des Tetra-Thallium-Hexaselenidohypodiphosphates Tl₄-P₂Se₆ // Z. Naturforsch. -1985 -40a. -P. 1248–1252.
- Banys J., Wondre F.R., Guseinov G. Powder diffraction study of TlGaTe₂, TlInTe₂ and TlInSe₂ // Mater. Lett. -1990. -9. -C. 269–274. DOI: <u>https://doi.org/10.1016/0167-577X(90)90</u> 059-U.
- Man L.I., Parmon V.S., Imamov R.M., Avilov A.S. The electron diffraction determination on the structure of the tetragonal phase Tl₅Se₃ // Kristallografiya. -1980. -25. -P. 1070–1072.
- Barchii I.E., Tovt V.A., Piasecki M. et al. Physicochemical Interaction in the TlInSe₂—TlIn-P₂Se₆ System. // Rus. J. Inorg. Chem. -2018. -63(4). -P. 537–542. DOI: 10.1134/S00360236 18040034.
- Бацанов С.С. Экспериментальные основы структурной химии. -М.: Изд-во стандартов, 1986.

 Ормонт Б.Ф. Введение в физическую химию и кристаллохимию полупроводников. -М.: Высш. школа, 1982.

REFERENCES

- 1. Kanadzidis M.G. The Role of Solid State Chemistry in the Discovery of New Thermoelectric Materials. In: Terry M. Tritt (Eds.), *Semiconductors and Semimetals*. (San Diego, San Francisco, N.Y.: Academ. Press, 2001).
- Shevelkov A.V. Chemical aspects of creation of thermoelectric materials. Usp. Khim. 2008. 77: 867.
- McGuire M.A., Reynolds T.K., DiSalvo F.J. Exploring Thallium Compounds as Thermoelectric Materials: Seventeen New Thallium Chalcogenides. *Chem. Mater.* 2005. 17: 2875. DOI: 10. 1021/cm050412c
- Barchij I.E., Sabov M.Yu, El-Naggar A.M., Al-Zayed N. S., Albassam A.A., Fedorchuk A.O., Kityk I.V. Tl₄SnS₃, Tl₄SnSe₃ and Tl4SnTe₃ crystals as novel IR induced optoelectronic materials. *J. Mater. Sci.: Mater. Electron.* 2016. 27: 3901. DOI: 10.1007/s10854-015-4240-4
- Reshak A.H., Alahmed Z.A., Barchij I., Sabov M., Plucinski K.J., Kityk I.V., Fedorchuk A.O. The influence of replacing Se by Te on electronic structure and optical properties of Tl4PbX3 (X = Se or Te): Experimental and Theoretical investigations. *RSC Adv.* 2015. **5**: 1. DOI: 0.1039/C5 RA20956K
- Israel R., De Gelder R., Smits J.M.M., Beurskens P.T., Eijt S.W.H., Rasing T.H., Van Kempen H., Maior M.M., Motrya S.F. Crystal structures of di-tin-hexa(seleno)hypodiphosphate, Sn₂P₂Se₆, in the ferroelectric and paraelectric phase. *Z. Kristallogr*. 1998. **213**: 34. DOI: <u>https://doi.org/10.1524</u> /zkri.1998.213.1.34
- Kanatzidis M.G. New directions in synthetic solid state chemistry: chalcophosphate salt fluxes for discovery of new multinary solids. *Solid State Mat. Sci.* 1997. 2: 139. DOI: <u>https://doi.org/10</u>. 1016/S1359-0286(97)80058-7
- Chung I., Karst A.L., Weliky D.P., Kanatzidis M.G. [P₆Se₁₂]⁴: A Phosphorus-Rich Selenophosphate with Low-Valent P Centers. *Inorg. Chem.* 2006. 45: 2785. DOI: 10.1021/ic0601135
- 9. Galdamez A., Manriquez V., Kasaneva J., Avila R.E. Synthesis, characterization and electrical properties of quaternary selenodiphosphates: AMP₂Se₆ with A = Cu, Ag and M = Bi, Sb. *Mat. Res. Bull.* 2003. **38**: 1063. DOI:10.1016/S0025-5408(03)00068-0
- Pfeiff R., Kniep R. Quaternary selenodiphosphates(IV): M(I)M(III)[P₂Se₆], (M(I)=Cu, Ag;

ISSN 0041-6045. УКР. XIM. ЖУРН., 2019, т. 85, № 2

M(III) = Cr, Al, Ga, In). *J. Alloys Comp.* 1992. **186**: 111. DOI: <u>https://doi.org/10.1016/0925-8388</u> (92)90626-K

- Gave M.A., Bilc D., Mahanti S.D., Breshears J.D., Kanatzidis M.G.: On the lamellar compounds CuBiP₂Se₆, AgBiP₂Se₆ and AgBiP₂S₆. antiferroelectric phase transitions due to cooperative Cu⁺ and Bi³⁺ ion motion. *Inorg. Chem.* 2005. 44: 5293. DOI: 10.1021/ic050357+
- 12. Cajipe V.B., Ravez J., Maisonneuve V., Simon A., Payen C., Von Der Muhll R., Fischer J.E. Cupper ordering in lamellar $CuMP_2S_6$ (M = Cr, In) Transition to an antiferielectric or ferielectric phase. *Ferroelectrics*. 1996. **185**: 135. DOI: https://doi.org/10.1080/00150199608210497
- Bourdon X., Maisonneuve V., Cajipe V.B., Payen C., Ravez J., Fischer J.E. Cupper sublattice ordering in layered CuMP₂S₆ (M = Cr, In). *J. Alloys Comp.* 1999. **283**: 122. DOI: <u>https://doi.org/10</u>. 1016/S0925-8388(98)00899-8
- Mucha I. Phase diagram for the quasi-binary thallium (I) selenide–indium (III) selenide system. *Thermochimica Acta*. 2012. 550: 1. DOI: 10. 1016/j.tca.2012.09.028
- Voroshilov Y.V., Gebesh V.Y., Potorii M.V. Phase equilibria in the system In–P–Se and crystal structure of β-In₄(P₂Se₆)₃. *Inorg. Mater.* 1991. 27: 2141.
- Tovt V.O., Barchij I.E., Piasecki M., Kityk I.V., Fedorchuk A.O., Solomon A.M., Pogodin A.I. Triangulation of the Tl₂Se–In₂Se₃–"P₂Se₄" quasiternary system. *Nauch. Vestn. Uzhgorod. Univ. (Ser. Khim.).* 2016. 2(36): 14. [in Ukrainian].
- Akselrud L., Grin Yu.: WinCSD: software package for crystallographic calculations (Ver.4). J. Appl. Crystallogr. 2014. 47: 803. DOI: 10.1107/ S1600576714001058
- 18. Barchij I.E. Mathematical design of phase equi-

libria in the $Tl_2S-Tl_2Se-Tl_5Se_2I$ quasiternary system. *Ukr. Khim. Zh.* 2001. **67**(11):18. [in Ukrainian].

- Barchiy I.E., Tatzkar A.R., Fedorchuk A.O., Plucinski K. Phase diagrams of novel Tl₄SnSe₄— TlSbSe₂—Tl₂SnSe₃ quasi-ternary system following DTA and X-ray diffraction. *J. Alloys Comp.* 2016. 671: 109. DOI: https:// doi.org/10.1016j.jallcom. 2016.02.078
- Tovt V.O., Barchiy I.E., Fedorchuk A.O., Piasecki M., Kityk I.V., Solomon A.M., Pogodin A.I. Interaction in the TlInSe₂—Tl₄P₂Se₆ system. *Nauch. Vestn. Uzhgorod. Univ. (Ser. Khim.).* 2017. 1(37): 55. [in Ukrainian].
- Brockner W., Ohse L., Patzmann U., Eisenmann B., Schafer H. Kristallstruktur und Schwingungsspektrum des Tetra-Thallium-Hexaselenidohypodiphosphates Tl₄P₂Se₆. Z. Naturforsch. 1985. 40a: 1248.
- Banys J., Wondre F.R., Guseinov G. Powder diffraction study of TlGaTe₂, TlInTe₂ and TlInSe₂. *Mater. Lett.* 1990. **9**: 269. DOI: <u>https://doi.org/</u>10.1016/0167-577X(90)90059-U
- Man L.I., Parmon V.S., Imamov R.M., Avilov A.S. The electron diffraction determination on the structure of the tetragonal phase Tl₅Se₃. *Kristallografiya*. 1980. 25: 1070.
- Barchii I.E., Tovt V.A., Piasecki M., Fedorchuk A.A., Solomon A.M., Pogodin A.I. Physicochemical Interaction in the TlInSe₂-TlInP₂Se₆ System. *Rus. J. Inorg. Chem.* 2018. 63(4): 537. DOI: 10.1134/S0036023618040034
- 25. Batsanov S.S. *Experimental basics of structural chemistry*. (Moscow: Standards Publishing, 1986). [in Russian].
- 26. Ormont B.F. Introduction to the physical chemistry and crystalchemistry of semiconductors. (Moscow: High School, 1982). [in Russian].

Надійшла 02.04.2019