Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/5816
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRóbert Vargaen
dc.contributor.authorKatalin Kuchinkaen
dc.contributor.authorKucsinka Katalinhu
dc.contributor.authorКучінка Каталінuk
dc.date.accessioned2026-01-28T08:31:48Z-
dc.date.available2026-01-28T08:31:48Z-
dc.date.issued2025-
dc.identifier.citationIn Csernicskó István, Maruszinec Marianna, Molnár D. Erzsébet, Mulesza Okszána és Melehánics Anna (szerk.): A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben. Nemzetközi tudományos és szakmai konferencia Beregszász, 2025. október 8–9. Absztraktkötet. Beregszász, II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem, 2025. 96. p.en
dc.identifier.isbn978-617-8143-50-3 (puhatáblás)-
dc.identifier.isbn978-617-8143-51-0 (PDF)-
dc.identifier.urihttps://dspace.kmf.uz.ua/jspui/handle/123456789/5816-
dc.descriptionTeljes kiadvány: https://kme.org.ua/uk/publications/rol-bezpeki-v-transkordonnomu-ta-mizhnarodnomu-spivrobitnictvi/en
dc.description.abstractAbstract. The rapid adoption of Large Language Models (LLMs) in technical domains necessitates a rigorous, comparative assessment of their core computational abilities. Despite architectural advances, a performance gap persists in tasks requiring true mathematical reasoning and error-free algorithmic generation. This study addresses this gap by quantifying the proficiency differential across leading LLMs (ChatGPT, Claude, Gemini, Mistral) in complex Computer Science and Mathematics problems to identify specific systemic limitations. This research aims to compare the performance of various large language models (LLMs) — such as ChatGPT, Claude, Gemini, and Mistral — in solving mathematical and computer science problems. Findings indicate that LLMs demonstrate significant differences in logical reasoning, algorithmic thinking, and programming task performance. According to Moon [1], more advanced models show improved accuracy in mathematical derivations but still exhibit frequent logical and syntactic errors. Zhao [2] emphasizes that despite architectural advancements, consistent mathematical reasoning remains a challenge for current LLMs. Noveski [3] highlights that code generation success largely depends on prompt structure and task complexity. In educational contexts, the study by Emerging Investigators [4] shows that LLMs can effectively support mathematics learning but still require improvements in explanation depth and accuracy. Overall, large language models are promising tools for enhancing algorithmic and problem-solving skills, though their performance remains contextdependent and cannot yet substitute human expertise. Conclusion. While LLMs show a promising ability to enhance algorithmic and problem-solving skills and serve as effective, though imperfect, educational support tools, their performance remains fundamentally context-dependent. The persistent occurrence of logical and syntactic errors in complex mathematical derivations and the variability of code generation success confirm that current LLM architectures cannot yet reliably substitute the human capacity for domain-specific expertise and rigorous logical verification.en
dc.language.isoenen
dc.publisherII. Rákóczi Ferenc Kárpátaljai Magyar Egyetemen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectLarge Language Models (LLMs)en
dc.subjectmathematicsen
dc.subjectcode generationen
dc.subjectcomputer science problemsen
dc.titleComparative performance of large language models in solving mathematical and computer science problemsen
dc.typedc.type.conferenceAbstracten
Appears in Collections:A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben
Kucsinka Katalin

Files in This Item:
File Description SizeFormat 
Comparative_performance_large_language_2025.pdfIn Csernicskó István, Maruszinec Marianna, Molnár D. Erzsébet, Mulesza Okszána és Melehánics Anna (szerk.): A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben. Nemzetközi tudományos és szakmai konferencia Beregszász, 2025. október 8–9. Absztraktkötet. Beregszász, II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem, 2025. 96. p.9.99 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons