Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.kmf.uz.ua/jspui/handle/123456789/5882
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorSzanyi Jánoshu
dc.contributor.authorDorovtsi Adamen
dc.contributor.authorDaróci Ádámhu
dc.contributor.authorДоровці Адамuk
dc.date.accessioned2026-02-11T14:46:32Z-
dc.date.available2026-02-11T14:46:32Z-
dc.date.issued2025-
dc.identifier.citationIn Csernicskó István, Maruszinec Marianna, Molnár D. Erzsébet, Mulesza Okszána és Melehánics Anna (szerk.): A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben. Nemzetközi tudományos és szakmai konferencia Beregszász, 2025. október 8–9. Absztraktkötet. Beregszász, II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem, 2025. 214. p.en
dc.identifier.isbn978-617-8143-50-3 (puhatáblás)-
dc.identifier.isbn978-617-8143-51-0 (PDF)-
dc.identifier.urihttps://dspace.kmf.uz.ua/jspui/handle/123456789/5882-
dc.descriptionTeljes kiadvány: https://kme.org.ua/uk/publications/rol-bezpeki-v-transkordonnomu-ta-mizhnarodnomu-spivrobitnictvi/en
dc.description.abstractAbstract. In today’s rapidly evolving digital landscape, cybersecurity faces increasingly complex and dynamic threats. Traditional defensive mechanisms that rely on predefined signatures or rule-based systems often fail to detect novel attacks and zero-day vulnerabilities. Generative Artificial Intelligence (GenAI) offers a transformative approach to this challenge by enabling predictive threat modeling and proactive defense strategies. Through the use of advanced machine learning and generative modeling techniques, GenAI can analyze massive volumes of historical cyberattack data to uncover hidden correlations, simulate realistic threat scenarios, and anticipate future vulnerabilities. This predictive capacity represents a paradigm shift from reactive cybersecurity toward anticipatory, intelligence-driven protection that evolves alongside adversarial innovation. Generative artificial intelligence (GenAI) has emerged as a promising tool in cybersecurity for predicting and preempting threats. By leveraging machine learning on historical attack data and threat intelligence feeds, GenAI models can identify patterns and forecast potential new cyber-attack vectors and vulnerabilities [1]. This predictive capacity allows security teams to anticipate emerging threats and proactively reinforce defenses before attacks materialize. In addition, GenAI-driven systems excel at anomaly detection, learning the baseline of "normal" behavior and flagging deviations that may indicate novel intrusions beyond the scope of traditional signature-based detection. Furthermore, generative models can simulate adversarial behavior and generate diverse synthetic cyberattack scenarios to enhance preparedness [2]. For example, advanced GenAI systems have been used to create thousands of realistic attack variants, helping cybersecurity defenses recognize and neutralize previously unseen attack patterns [2]. These applications of GenAI significantly strengthen threat intelligence and incident response by expanding the scope of scenarios considered and improving the robustness of detection algorithms. However, the same generative techniques also present new challenges: malicious actors are employing GenAI to craft more sophisticated malware, polymorphic attacks, and convincing social engineering lures (like deepfakes and phishing campaigns) that evade conventional security measures [1]. This dual-edged nature means that while GenAI provides powerful predictive insights for cyber threat forecasting and enables more proactive defense strategies, organizations must implement strong ethical guidelines and security controls to mitigate the risks of GenAI misuse.en
dc.language.isoenen
dc.publisherII. Rákóczi Ferenc Kárpátaljai Magyar Egyetemen
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectGenerative Artificial Intelligence (GenAI)en
dc.subjectcybersecurityen
dc.subjectpredictive threat modelingen
dc.titleThe role of generative AI in predicting cybersecurity threatsen
dc.typedc.type.conferenceAbstracten
Розташовується у зібраннях:A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben
Daróci Ádám

Файли цього матеріалу:
Файл Опис РозмірФормат 
The_role_generative_predicting_cybersecurity_threats_2025.pdfIn Csernicskó István, Maruszinec Marianna, Molnár D. Erzsébet, Mulesza Okszána és Melehánics Anna (szerk.): A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben. Nemzetközi tudományos és szakmai konferencia Beregszász, 2025. október 8–9. Absztraktkötet. Beregszász, II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem, 2025. 214. p.9.99 MBAdobe PDFПереглянути/Відкрити


Ліцензія на матеріал: Ліцензія Creative Commons Creative Commons