Please use this identifier to cite or link to this item: https://dspace.kmf.uz.ua/jspui/handle/123456789/1308
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVictor Bovdien
dc.contributor.authorTetiana Klymchuken
dc.contributor.authorTetiana Rybalkinaen
dc.contributor.authorMohamed A. Salimen
dc.contributor.authorVladimir V. Sergeichuken
dc.contributor.authorBódi Viktorhu
dc.contributor.authorБовді Вікторuk
dc.contributor.authorКлімчук Тетянаuk
dc.contributor.authorРибалкіна Тетянаuk
dc.contributor.authorСергейчук Володимирuk
dc.date.accessioned2021-09-13T10:44:53Z-
dc.date.available2021-09-13T10:44:53Z-
dc.date.issued2020-07-01-
dc.identifier.citationVictor Bovdi, Tetiana Klymchuk, Tetiana Rybalkina, Mohamed A. Salim, Vladimir V. Sergeichuk: Operators on positive semidefinite inner product spaces. In Linear Algebra and its Applications. 1 July 2020. Volume 596. pp. 82-105.en
dc.identifier.issn0024-3795-
dc.identifier.otherhttps://doi.org/10.1016/j.laa.2020.03.004-
dc.identifier.urihttp://dspace.kmf.uz.ua:8080/jspui/handle/123456789/1308-
dc.descriptionhttps://www.sciencedirect.com/science/article/abs/pii/S002437952030118Xen
dc.description.abstractAbstract. Let U be a semiunitary space; ie, a complex vector space with scalar product given by a positive semidefinite Hermitian form<⋅,⋅>. If a linear operator A: U→ U is bounded (ie,‖ A u‖⩽ c‖ u‖ for some c∈ R and all u∈ U), then the subspace U 0:={u∈ U|< u, u>= 0} is invariant, and so A defines the linear operators A 0: U 0→ U 0 and A 1: U/U 0→ U/U 0. Let A be an indecomposable bounded operator on U such that 0≠ U 0≠ U. Let λ be an eigenvalue of A 0. We prove that the algebraic multiplicity of λ in A 1 is not less than the geometric multiplicity of λ in A 0, and the geometric multiplicity of λ in A 1 is not less than the number of Jordan blocks J t (λ) of each fixed size t× t in the Jordan canonical form of A 0. We give canonical forms of selfadjoint and isometric operators on U, and of Hermitian forms on U. For an arbitrary system of semiunitary spaces and linear mappings on/between them, we give an algorithm that reduces their matrices to canonical form. Its special cases are Belitskii's and Littlewood's algorithms for systems of linear operators on vector spaces and unitary spaces, respectively.en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseries;Volume 596.-
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectPositive semidefinite inner product spacesen
dc.subjectBounded operatorsen
dc.subjectBelitskii's and Littlewood's algorithmsen
dc.subjectPozitív félig végleges belső termékterekhu
dc.subjectKorlátozott operátorokhu
dc.subjectBelitski és Littlewood algoritmusaihu
dc.titleOperators on positive semidefinite inner product spacesen
dc.typedc.type.collaborativeen
Appears in Collections:Bódi Viktor

Files in This Item:
File Description SizeFormat 
Bovdi_V_Operators_on_positive_semidefinite_inner_product_spaces_2020.pdfVictor Bovdi, Tetiana Klymchuk, Tetiana Rybalkina, Mohamed A. Salim, Vladimir V. Sergeichuk: Operators on positive semidefinite inner product spaces. In Linear Algebra and its Applications. 1 July 2020. Volume 596. pp. 82-105.439.65 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons