Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén:
https://dspace.kmf.uz.ua/jspui/handle/123456789/5423Összes dokumentumadat
| DC mező | Érték | Nyelv |
|---|---|---|
| dc.contributor.author | Kápolnai Ágnes | hu |
| dc.date.accessioned | 2025-10-20T10:27:06Z | - |
| dc.date.available | 2025-10-20T10:27:06Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | In Кучінка Каталін, Тилищак Олександр та ін. (ред. кол.): Інноваційні цифрові методи в галузі освіти та досліджень. Міжнародна науково-практична конференція Берегове, 27-28 березня 2025 року. Збірник тез доповідей. Берегове, ЗУІ ім. Ференца Ракоці ІІ, 2025. c. 144-145. | en |
| dc.identifier.isbn | 978-617-8143-36-7 (PDF) | - |
| dc.identifier.uri | https://dspace.kmf.uz.ua/jspui/handle/123456789/5423 | - |
| dc.description.abstract | Abstract. Let F be a field of characteristic p > 0 and let G be a non-abelian group. Denote by U(F G) the unit group of the group ring F G. In 1991, Shalev [6] provided a necessary and sufficient condition for U(F G) to be metabelian (i.e., for the commutator subgroup of U(F G) to be abelian) in the case where G is finite and p > 2. A few years later, Kurdics [4], as well as Coleman and Sandling [2] independently, extended this result to the case p = 2. Namely, they proved that when p = 2 and G is finite, U(F G) is metabelian if and only if either the commutator subgroup G′ of G is a central elementary abelian 2-group of order at most 4, or F is the field of 2 elements and G belongs to a specific class of non-nilpotent groups. For odd characteristic, the finiteness assumption on the order of G has already been relaxed: Catino and Spinelli [1] showed that the theorem of Shalev remains valid when G is a torsion group, and in 2022, Juhász and Spinelli [3] investigated the case where G contains elements of infinite order, discovering some new cases. In the case p = 2, Catino–Spinelli [1] and Mozgovoj [5] proved that the Kurdics, Coleman–Sandling theorem also holds for torsion groups. Furthermore, Mozgovoj’s work shows that the result remains valid even when G contains elements of infinite order, provided that G is non-nilpotent. | en |
| dc.language.iso | en | en |
| dc.publisher | ЗУІ ім. Ференца Ракоці ІІ | en |
| dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
| dc.subject | group ring | en |
| dc.subject | metabelian | en |
| dc.title | Group rings with metabelian unit groups in characteristic 2 | en |
| dc.type | dc.type.conferenceAbstract | en |
| Ebben a gyűjteményben: | Innovatív digitális módszerek az oktatás és kutatás területén | |
Fájlok a dokumentumban:
| Fájl | Leírás | Méret | Formátum | |
|---|---|---|---|---|
| Group_rings_with_metabelian_unit_groups_characteristic_2025.pdf | In Кучінка Каталін, Тилищак Олександр та ін. (ред. кол.): Інноваційні цифрові методи в галузі освіти та досліджень. Міжнародна науково-практична конференція Берегове, 27-28 березня 2025 року. Збірник тез доповідей. Берегове, ЗУІ ім. Ференца Ракоці ІІ, 2025. c. 144-145. | 12.3 MB | Adobe PDF | Megtekintés/Megnyitás |
This item is licensed under a Creative Commons License



