Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://dspace.kmf.uz.ua/jspui/handle/123456789/5423
Назва: | Group rings with metabelian unit groups in characteristic 2 |
Автори: | Kápolnai Ágnes |
Ключові слова: | group ring;metabelian |
Дата публікації: | 2025 |
Видавництво: | ЗУІ ім. Ференца Ракоці ІІ |
Вид документа: | dc.type.conferenceAbstract |
Бібліографічний опис: | In Кучінка Каталін, Тилищак Олександр та ін. (ред. кол.): Інноваційні цифрові методи в галузі освіти та досліджень. Міжнародна науково-практична конференція Берегове, 27-28 березня 2025 року. Збірник тез доповідей. Берегове, ЗУІ ім. Ференца Ракоці ІІ, 2025. c. 144-145. |
Короткий огляд (реферат): | Abstract. Let F be a field of characteristic p > 0 and let G be a non-abelian group. Denote by U(F G) the unit group of the group ring F G. In 1991, Shalev [6] provided a necessary and sufficient condition for U(F G) to be metabelian (i.e., for the commutator subgroup of U(F G) to be abelian) in the case where G is finite and p > 2. A few years later, Kurdics [4], as well as Coleman and Sandling [2] independently, extended this result to the case p = 2. Namely, they proved that when p = 2 and G is finite, U(F G) is metabelian if and only if either the commutator subgroup G′ of G is a central elementary abelian 2-group of order at most 4, or F is the field of 2 elements and G belongs to a specific class of non-nilpotent groups. For odd characteristic, the finiteness assumption on the order of G has already been relaxed: Catino and Spinelli [1] showed that the theorem of Shalev remains valid when G is a torsion group, and in 2022, Juhász and Spinelli [3] investigated the case where G contains elements of infinite order, discovering some new cases. In the case p = 2, Catino–Spinelli [1] and Mozgovoj [5] proved that the Kurdics, Coleman–Sandling theorem also holds for torsion groups. Furthermore, Mozgovoj’s work shows that the result remains valid even when G contains elements of infinite order, provided that G is non-nilpotent. |
URI (Уніфікований ідентифікатор ресурсу): | https://dspace.kmf.uz.ua/jspui/handle/123456789/5423 |
ISBN: | 978-617-8143-36-7 (PDF) |
metadata.dc.rights.uri: | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
Розташовується у зібраннях: | Innovatív digitális módszerek az oktatás és kutatás területén |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Group_rings_with_metabelian_unit_groups_characteristic_2025.pdf | In Кучінка Каталін, Тилищак Олександр та ін. (ред. кол.): Інноваційні цифрові методи в галузі освіти та досліджень. Міжнародна науково-практична конференція Берегове, 27-28 березня 2025 року. Збірник тез доповідей. Берегове, ЗУІ ім. Ференца Ракоці ІІ, 2025. c. 144-145. | 12.3 MB | Adobe PDF | Переглянути/Відкрити |
Ліцензія на матеріал: Ліцензія Creative Commons