Ezzel az azonosítóval hivatkozhat erre a dokumentumra forrásmegjelölésben vagy hiperhivatkozás esetén:
https://dspace.kmf.uz.ua/jspui/handle/123456789/5861| Cím: | Using AI in targeting social bots |
| Szerző(k): | Yevhen Verbutskyi Yelyzaveta Rabirokh Larysa Tereminko Теремінко Лариса |
| Kulcsszavak: | social bots;artificial intelligence |
| Kiadás dátuma: | 2025 |
| Kiadó: | II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem |
| Típus: | dc.type.conferenceAbstract |
| Hivatkozás: | In Csernicskó István, Maruszinec Marianna, Molnár D. Erzsébet, Mulesza Okszána és Melehánics Anna (szerk.): A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben. Nemzetközi tudományos és szakmai konferencia Beregszász, 2025. október 8–9. Absztraktkötet. Beregszász, II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem, 2025. pp. 172-173. |
| Absztrakt: | Abstract. One of the biggest threats to the integrity of online conversation in the digital age is social bots. The potential of these automated accounts, intended to imitate human behavior on social media platforms, to disseminate false information, sway public opinion, and divide communities, is becoming increasingly complex. Traditional rule-based detection techniques are no longer enough as bot technology advances. With its ability to detect and eliminate these dangers, artificial intelligence has become a vital tool in the fight against the bot epidemic. These days, social bots are much more than just spam accounts. They create believable content using natural language processing, post at random intervals to prevent pattern recognition, and engage with actual users in ways that seem authentic. By coordinating in networks, they give the appearance of grassroots support while boosting particular narratives. Because of their sophistication, they are especially hazardous during social movements, public health emergencies, and elections. According to studies, bots make up between 9% and 15% of active accounts on popular platforms, with percentages sharply increasing during pivotal moments when bot networks come online to influence particular discussions. Bot detection has been transformed by machine learning algorithms that can recognize intricate patterns that human analysts cannot. With detection accuracy rates above 95%, supervised learning models trained on labeled datasets can analyze hundreds of features simultaneously, including network topologies and engagement metrics, as well as linguistic patterns and temporal activity. The analysis of sequential social media activity, the identification of slight irregularities in posting patterns, and the recognition of coordinated behavior across several accounts are all made possible by deep learning approaches, especially recurrent neural networks and transformers. By examining social network architecture, graph neural networks can spot suspicious grouping patterns indicative of bot networks. In content analysis, natural language processing is essential. Artificial intelligence (AI) models can recognize manipulation techniques, such as emotional manipulation and logical fallacies, and detect generated text and recycled information. Social media companies have incorporated AIpowered detection into their systems; Facebook uses machine learning to identify coordinated inauthentic activity, and Twitter deletes millions of suspicious accounts every month. These systems operate around the clock, analyzing billions of interactions to identify and eliminate bad actors before they cause severe damage. |
| Leírás: | Teljes kiadvány: https://kme.org.ua/uk/publications/rol-bezpeki-v-transkordonnomu-ta-mizhnarodnomu-spivrobitnictvi/ |
| URI: | https://dspace.kmf.uz.ua/jspui/handle/123456789/5861 |
| ISBN: | 978-617-8143-50-3 (puhatáblás) 978-617-8143-51-0 (PDF) |
| metadata.dc.rights.uri: | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ |
| Ebben a gyűjteményben: | A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben |
Fájlok a dokumentumban:
| Fájl | Leírás | Méret | Formátum | |
|---|---|---|---|---|
| Using_AI_in_targeting_social_bots_2025.pdf | In Csernicskó István, Maruszinec Marianna, Molnár D. Erzsébet, Mulesza Okszána és Melehánics Anna (szerk.): A biztonság szerepe a határon átnyúló és nemzetközi együttműködésben. Nemzetközi tudományos és szakmai konferencia Beregszász, 2025. október 8–9. Absztraktkötet. Beregszász, II. Rákóczi Ferenc Kárpátaljai Magyar Egyetem, 2025. pp. 172-173. | 10 MB | Adobe PDF | Megtekintés/Megnyitás |
This item is licensed under a Creative Commons License



