Please use this identifier to cite or link to this item:
                
    
    https://dspace.kmf.uz.ua/jspui/handle/123456789/1582| Title: | Isomorphisms of matrix groups over commutative rings | 
| Authors: | Vasyl Petechuk Julia Petechuk Петечук Василь Петечук Юлія Petecsuk László Petecsuk Júlia | 
| Keywords: | linear group over ring;homomorphism of matrix group;elementary subgroup over ring | 
| Issue Date: | 26-Jan-2017 | 
| Publisher: | Bolyai Institute, University of Szeged | 
| Type: | dc.type.article | 
| Citation: | Vasyl Petechuk, Julia Petechuk: Isomorphisms of matrix groups over commutative rings. In Acta scientiarum mathematicarum: acta Universitatis Szegediensis. 2017. Volume 83., Numbers 1-2. pp. 113-123. | 
| Series/Report no.: | Acta Universitatis Szegediensis;Volume 83., Numbers 1-2. | 
| Abstract: | Abstract. We give a description of the isomorphism classes of matrix groups over commutative rings with 1 and that have dimension more than 3 and containing the group of elementary transvections. We characterize those homomorphisms of matrix groupe, which satisfy the so-called (*) condition. Such homomorphisms can be constructed with the help of the standard homomorphism. We apply the characterization obtained to the description of the above class of matrix groups. | 
| Description: | http://pub.acta.hu/acta/showCustomerVolume.action?id=48928&dataObjectType=volume&noDataSet=true&style= | 
| URI: | http://dspace.kmf.uz.ua:8080/jspui/handle/123456789/1582 | 
| ISSN: | 0001-6969 (Print) 2064-8316 (Online) | 
| metadata.dc.rights.uri: | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | 
| Appears in Collections: | Petecsuk Júlia | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Petecsuk_L_Petecsuk_J_Isomorphisms_of_matrix_groups_over_commutative_rings_2017.pdf | Vasyl Petechuk, Julia Petechuk: Isomorphisms of matrix groups over commutative rings. In Acta scientiarum mathematicarum: acta Universitatis Szegediensis. 2017. Volume 83., Numbers 1-2. pp. 113-123. | 315.4 kB | Adobe PDF | View/Open | 
This item is licensed under a Creative Commons License
     
    

 
	

